Cumulative impact of hazard-based legislation on Crop Protection Products in Europe

Report

April 2016

steward redqueen

Contents

About	the authors3
Forew	ord by ECPA
1	Summary5
2	Introduction
2.1	EU legislation
2.2	Integrated Pest Management & Resistance
2.3	Scope of this study
2.4	Method, data & process
3 E	J-level impact
3.1	EU Farm-level income effects
3.2	EU Farm-level employment effects
3.3	EU- self-sufficiency & trade effects
3.4	Broader ripple effects
3.4	Land use
3.5	Carbon footprint
4	France
5.	Germany 37
6	UK
7	Poland45
8	Spain
9	Italy
10	The Netherlands
11	Austria63
12	Ireland
APPEI	NDIX I – Detailed changes71
APPEI	NDIX II – Production data114
APPEI	NDIX III - Methodology123
APPFI	JDIX V - References

About the authors

Company profile

Steward Redqueen is a strategy consultancy firm that aims to make business work for society. It is represented in Amsterdam, Barcelona and New York and executes projects around the world. As specialists since 2000, Steward Redqueen focuses on integrating sustainability, quantifying impact and facilitating change. Clients appreciate our rigorous analysis, our ability to solve complex problems, and being ahead of the curve. We work for (multinational) corporations, (development) financials and public sector organizations.

Socio-economic impact assessments (SEIA)

Pesticides have been a source of controversy for many decades. Supporters point to the benefits of controlling risks of pests, increasing the yield per hectare, contributing to stable supply of basis food and at the same time supporting agricultural incomes. Detractors assert environmental implications and are concerned about human health. Our Socio-Economic Impact Assessments go beyond assertions in an effort to quantify the direct and indirect impacts of pesticide use, adding a quantitative dimension to the discussions.

The Authors

René Kim is founder and partner of Steward Redqueen. He has worked with many multinational companies and private equity funds in both developed and emerging markets. Previously, he worked for the Boston Consulting Group in Amsterdam and has a Ph.D. cum laude in Hydrology and Meteorology.

Willem Ruster has a strong track record in socio-economic impact assessments and executed more than 40 projects in various sectors around the globe. Over the last years, Willem has specialized in innovation and developments in the agro-food chain.

Hedda Eggeling holds a cum laude Master's degree in Economics and has over 6 years of experience in performing socio-economic impact assessments, supply chain analyses and economic modelling. Within Steward Redqueen, Hedda's special interest is in the link between trade and development.

Track record SEIA

Since 2006 Steward Redqueen has completed more than 70 socio-economic impact studies for multinational mining companies, development finance institutions, multinational food & beverage firms, banks and recreational organisations, in Asia, Africa, Latin America and Europe.

For more information visit: www.stewardredgueen.com

Foreword

Commissioner Hogan, DG AGRI: "feeding the world is a global necessity and we must support our producers using all the instruments at our disposal", December 2015

EU farmers use a wide range of cultivation techniques, planting choices and crop rotations to protect their crops, including pesticides. As the EU is striving towards greener agriculture, the role of pesticides is sometimes not fully understood. Their use is therefore largely debated and increasingly put under pressure . This has also led to a shift from risk to hazard-based legislation adopted by policy-makers.

The EU is one of the world's largest agricultural producers. Ranging from wheat to tomatoes and citrus fruits, it supplies European consumers and industry but also many regions outside the EU. EU legislation therefore not only affects Europeans but also others.

In this light, the development of next generation substances gains importance. But the pipeline of new crop protection products is drying up; every year it takes longer to market new products and the number of available products has halved in 15 years' time.

In this report, we address the socio-economic effects of hazard-based legislation on farmers and the European food chain. Compared to best alternative technologies, how does it affect the economic viability of crop production in Europe? How will it alter the EU's trade balance and the carbon footprint of crop production? And finally, what are the ripple effects in the food chain?

This study contributes to similar work that has been conducted by Wageningen University, The Andersons Centre, the Humboldt Forum and Teagasc at the national or product level. It is a first attempt to gain insights on the Europe-wide effects of all substances at risk on farmers and the food chain covering 49% of EU crop value. These insights are complementary to other societal assessments on health and environmental aspects. Future research could further contribute to gain cumulative insights at the EU level by investigating specific active ingredients and countries.

We believe that all societal aspects should be included in shaping the optimal conditions for agriculture and sustainable supply of affordable and safe food in Europe. And, at the end of the day, support decision-making on what is the best use of European (agricultural) land.

1 Summary

The viability of European agriculture is put under pressure. As a result of the EU moving towards hazard-based legislations, several substances for plant protection used in the EU are at risk. While no definite decision on which active substances face withdrawal has been taken yet, earlier research identified some 75 out of the total 400 substances currently available to be phased out.

This would imply that for the cultivation of various staple as well as specialty crops no alternative method might remain on the market to treat specific common diseases, pest or weed. As part of Integrated Pest Management (IPM), diversity in substances available is crucial to face immediate pest pressure and prevent long-term resistance effects. Looking ahead, the substances withdrawn are not likely to be easily replaced. There are two reasons for that: first, the development of new active ingredients up to market introduction takes about 11 years and costs over €280 million¹. Secondly, the pipeline of products waiting for approval for the European market is also getting emptier due to rising Research and Development (R&D) time and costs (i.e. 70 substances in pipeline in 2000, down to 28 in $2012)^{2}$.

In this background, the study aims to shed light on the current value of the 75 substances for European agriculture. It focuses on 7 staple crops at the EU level and 24 specialty crops across 9 EU member states. Together this represents 49% (in value)³. The various crops are studied by themselves; possible effects on pesticide use of specific crop rotations (or any significant change in the rotations) have not been taken into consideration. The analysis is based on 5-year average productivity and costs (2009-2013) in order to average out yearly variations:

- The team builds largely on the risk list of 87 substances that has been drafted by Andersons⁴ with DEFRA as key source. 12 substances have been taken out as these are based on UK-specific regulation or at low risk, thereby aiming to get to likely EUwide conclusions;
- We studied the nine largest EU agricultural markets (representing 62% of EU crop value of the staple crops⁵) and extrapolated these effects to the EU level;
- Within the nine country studies, the crop coverage ranges from a minimum of 25% in the Netherlands up to 70% in France of national crop value;
- The selection of crops included in the scope of the study is based on relevance of various crops and data availability for the countries covered;

³ Total volume of EU crop output is €204bln, FOASTAT

¹ Phillips McDougall, Agrochemical Research and development: The Costs of New Product Discovery, Development and Registration, 2016

² Phillips McDougall, R&D trends for chemical crop protection products, Sept 2013

⁴ "The Effect of the Loss of Plant Protection Products on UK Agriculture and Horticulture and the Wider Economy", The Andersons Centre supported by AIC, NFU, CPA; 2014. The Andersons Centre also draws on insights from the ADAS report on 'The Impact of Changing Pesticides Availability on Horticulture' from 2010. This study's methodology and substance list are in line with these previous analyses.

⁵ Stable crops include: wheat, barley, maize, oilseed rape, potatoes, sugar beet and vine. Specialty crops include: durum wheat, carrots, apples, beans, hops, onions, brassica, mushrooms, rice, tomatoes (open & glass), pears, peaches/nectarines, soy, hazelnut, olives, tulip bulbs, apple trees, bell pepper, black currants, citrus fruits, cherry, sunflower and peas for selected countries

• We use the best available national and EU databases on crop production, cost structures (e.g. EUROSTAT, FAOstat, FADN, WUR, Teagasc, DEFRA).

The study focus is the immediate effects on yields in line with the WUR 2008 and Andersons' study, and expected long-term (resistance) effects are stated separately.

Key findings

- 1. Using the 75 substances identified for the production of 7 key staple crops in the EU (potato, barley, wheat, sugar beet, rapeseed, maize and vine) contributes to 96 million ton or €15b in crop value:
 - Barley, wheat, rapeseed and maize could face 10-20% lower yields, while potato and sugar beet might decrease by up to 30-40%; vine yields will decrease of 20%;
 - At current speed of technological progress, it would take 15-20 years to make up for this loss⁶;
 - Higher yields and lower production costs for these crops support farmer income by €17b (i.e. €15b additional revenue, €2b lower costs);
 - Overall farm profitability is with the 75 substances 40% higher (€17b of a total of €44b)⁷;
 - In value, wheat benefits the most with €4b of value, while sugar beet shows the largest profitability surplus (+100%);
 - The 7 staple crops relate to 1.2m direct jobs. Of these, 30% face a medium or high risk of job loss due to relatively 'thin' margins these crops.
- 2. The 75 substances are crucial for the economic viability of the 24 specialty crops in scope:
 - The yield supported ranges from 40-100%, a total of 12 million tons⁸;
 - The size of the crop protection toolbox of many specialty crops is already limited and is the key driver of the high potential yield losses;
 - These 24 specialty crops relate to 300,000 direct jobs of which almost 60% are at high risk of job loss due to relatively large loss of margins.
- 3. At current crop demand, the 75 substances support the EU's self-sufficiency for wheat, barley, potato and sugar beet, while limiting the import levels of rapeseed and maize:
 - In contrast to the current situation with a positive trade balance, without the substances the EU is likely to depend on imports for more than 20% of its staple crop demand;
 - Matching the demand with imported crops bears the risk of selling crop produced with non-EU standards on the European market;
 - Meeting the demand for specialty crops seems even more challenging as sufficient import amounts are not always readily available;
 - An additional 9 million ha farmland might need to be integrated to feed Europe. This is equal to half of the total used agricultural area of the UK⁹;

Profitability based on gross margin changes. Gross margin is defined as the difference of total revenues and total variable costs. The choice to report on gross margins has been made due to data availability: while the official sources on variable costs in various countries provide estimates in the same range information on fixed costs lack consistency

⁶ "The technology challenge", FAO, High Level Expert Forum, 2009

⁸ Includes durum wheat, carrots, apples, beans, hops, onions, brassica, mushrooms, rice, tomatoes (open & glass), pears, peaches/nectarines, soy, hazelnut, olives, tulip bulbs, apple trees, bell pepper, black currants, citrus fruits, cherry, sunflower and peas for selected countries

⁹ Total used agricultural area in the UK was 17,326,990 ha in 2013, Eurostat

- This would increase the carbon emissions with up to 49 million t CO_2 -eq (i.e. 10% EU agriculture, 1% of EU, similar to the total emissions of Denmark¹⁰ or twice the international aviation emissions of Germany¹¹), putting the CO_2 aims of European legislation at risk;¹²
- In monetary terms, that might mean additional emissions worth €500 million¹³.
- 4. Mediterranean crops analysed benefit from using the 75 active substances because they have a wide range of pest diseases and most of them are minor crops that currently benefit of a strict number of registered active substances:
 - In a short term overview, vine yields will decrease of 20% (-22% in France, -13% Spain, -20% Austria and Italy even -30%) and overall farm profitability will be 11% lower;
 - The EU is currently self-sufficient for vine. Lossing the active substances will require the EU to import some 4Mt vine from third countries;
 - Yields are expected to decrease by -92% in carrots, -60% in apples, -65% in pears, -40% in olives, -36% in tomato, -36% in citrus fruit, -15% in cherry.
- 5. Smaller local crop supply will also affect EU value chains with higher costs and less jobs:
 - Primary crop processors in the EU could face difficulties with their supplies, e.g. if tomatoes indeed become economically unviable to be cultivated locally, the longterm perspective for the processors is uncertain;
 - Effects are likely to trickle down the value chain up to the consumer but also to affect trading partners of the EU.

¹³ €10 per ton, average 2009-2013 ETS prices

7

¹⁰ Total Danish greenhouse gas emissions (including international aviation and excluding LULUCF) in 2013 were 57.1 million ton CO2eq., Eurostat

¹¹ German greenhouse gas emissions related to international aviation in 2013 were 25.7 million ton CO2eq., Eurostat

 $^{^{\}rm 12}$ Agriculture makes up 10% of European total emissions in 2012 of a total 4,683 million tons, Eurostat

2 Introduction

ECPA along with their respective national organizations commissioned Steward Redqueen to examine the socio-economic effects of current hazardous legislation for Crop Protection Products (CPPs) at EU farms and the wider economy. Copa and Cogeca welcome this research as a valid addition to confirm the negative effects of the loss of Plant Protection Products.

European farmer organizations, agri-cooperatives, technical institutes as well as ECPA's national associations have contributed to acquire the best available data on farm level changes.

- The study covers the effects on crop production levels, farmer incomes & profitability, jobs, carbon footprint and land use;
- These insights should complete other socio-economic work and research that has been done on local environmental and health effects of CPPs to obtain a complete picture of the societal effects.

The objective of this study is to determine the economic and environmental effects of the hazard-based regulation for crop protection products in Europe. The insights provided can be used to proactively inform stakeholders, engaging into fruitful debates based on factual arguments.

2.1 EU legislation

Before the 1990s, prior to Directive 91/414/EEC, individual member states were responsible for pesticide approval. From then onwards substances had to meet specific safety and efficacy criteria before approved for the EU market as a whole. The harmonisation following this regulation has led to a first round of active substances reduction available for EU farmers. In the years thereafter, a couple of additional legislations have been implemented. The main ones include:

- The Water Framework Directive 2000/60/EC¹⁴
- Regulation 1107/2009¹⁵
- Regulation 485/2013¹⁶

The Water Framework Directive 2000/60/EC aims for all rivers, lakes, ground, coastal and drinking water in the EU to reach good ecological and chemical standards. It does so by setting limits on amounts of pesticides allowed and introducing quality requirements for groundwater.

Regulation 1107/2009came into force in 2011 and governs the approval or re-approval of substances. The purpose of this Regulation is to ensure a high level of protection of both

¹⁴ Directive 2000/60/EC establishing a framework for Community action in the field of water policy

¹⁵ Regulation (EC) No 1107/2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC

¹⁶ Commission Implementing Regulation (EU) No 485/2013 amending Implementing Regulation (EU) No 540/2011, as regards the conditions of approval of the active substances clothianidin, thiamethoxam and imidacloprid, and prohibiting the use and sale of seeds treated with plant protection products containing those active substances

human and animal health and the environment. Therefore, only safe active substances are approved. According to the 'cut-off criteria', active substances will not be approved in case they classify as having the following characteristics (i) mutagenic, (ii) carcinogenic or reproductive toxicity, (iii) endocrine disruptor, (iv) persistent organic pollutants, (v) persistent bio-accumulative and toxic and (vi) very persistent/very bio-accumulative. For substances identified as 'candidates of substitution', initial approval can be deemed and products containing these substances might be removed if a safer alternative becomes available.

With the introduction of 1107/2009, the EU shifted from a risk-based to a more hazard-based legislation. While these terms are often used interchangeably, in research they refer to different degrees of pre-caution taken. Hazard becomes a risk depending on exposure: watching a shark from the beach is a hazard but becomes a risk if swimming. This shift towards risk evaluation of crop protection substances from a hazard based perspective has implications for the farming toolbox, the amount of solutions available with which they can threat pests. This is believed to have contributed to the list of substances drop down from over 800 in the 1990s to fewer than 400 active substances available for European farmers today¹⁷.

Regulation 485/2013 imposes restrictions on three neonicotinoid substances. While it remains possible to use these substances on crops like sugar beet, the restriction remains for flowering and spring planted crops until a full review of all new scientific data.

2.2 Integrated Pest Management & Resistance

Before farmers consider the use of pesticide products and even before sowing, farmers carefully employ Integrated Pest Management (IPM) measures to limit the impact of pests and diseases on crops. Crop rotation, seed and variety selection, cultivation practise, planting dates or planting densities are some of the different strategies that farmers apply.

Farmers adapt the above practices to account for seasons, soil conditions and with weather forecast which, in their experience, is most likely to maximise their crop yield. In this respect, to effectively fight against pests and diseases requires a wide range of solutions (including all kinds of pesticides) in order to allow correct choices at farm level and avoid resistances.

This is in particular highlighted by the European and Mediterranean Plant Protection Organization in its Guidance on comparative assessment (PP 1/271). It states that in case there is evidence of medium risk of resistance in the target organism, at least three modes of action are recommended. With evidence of high risk, at least 4 modes of action are recommended. Maintaining a broad range of crop protection modes of action is therefore essential to reduce the risk of resistance.

IPM is not a new concept, as this is based on good farming practices that have evolved over time. In this respect, in order to give wherever possible priority to non-chemical methods, cultural management strategies are always the first point of call for all farmers growing crops.

The over-whelming majority of pests and diseases in crops are controlled with cultural, or physical, measures. Examples of cultural measures include crop rotation, timing, cultivation,

¹⁷ Development of approved active substances, Source: European Commission, Healthy Harvest, NFU

drainage, plant breeding and irrigation. These measures form one part of what has become known as IPM, which seeks to control pests and diseases through a holistic approach including the aforementioned cultural means, as well as mechanical, biological and chemical controls.

Further, under Directive 129/2008/EC establishing a framework for Community action to achieve the sustainable use of pesticides (SUD), farmers who rely on pesticide products are required to consider the principles of Integrated Pest Management (IPM) ¹⁸.

2.3 Scope of this study

This study aims to shed light on the current value of 75 substances used in pesticides for European agriculture. This is done by investigating the implications of losing those 75 substances currently at risk of being banned at the same moment of time. Put differently, the study establishes a hypothetical 'new normal' situation of the crop protection toolbox available for farmers for the coming 5-years.

Exhibit 1 depicts the implications that can be expected from the change in substance availability, distinguishing between consequences at farm-level agronomic implications and broader ripple effects. This study, while recognizing effects on biodiversity and health, focuses on economic and carbon foot print implications. Building on existing research, this study attempts to depict socio-economic consequences of EU legislation on the EU level.

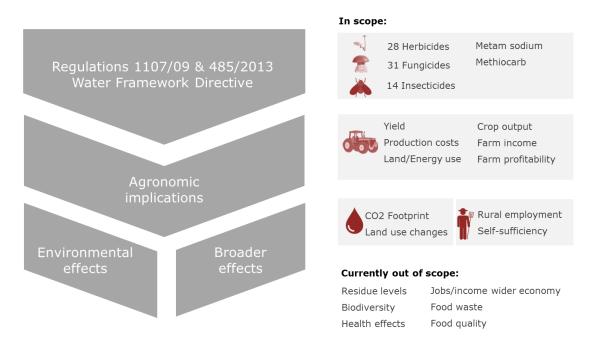


Exhibit 1: Overview of indicators in scope of the assessment

¹⁸ According to Directive 2009/128/EC establishing a framework for Community action to achieve the sustainable use of pesticides 'integrated pest management' means careful consideration of all available plant protection methods and subsequent integration of appropriate measures that discourage the development of populations of harmful organisms and keep the use of plant protection products and other forms of intervention to levels that are economically and ecologically justified and reduce or minimise risks to human health and the environment. 'Integrated pest management' emphasises the growth of a healthy crop with the least possible disruption to agroecosystems and encourages natural pest control mechanisms;

steward redqueen

In terms of crops considered, the study focuses on 7 staple $crops^{19}$ and 24^{20} specialty crops across 9 EU member states²¹. For the staple crops, implications on national level are extrapolated to EU totals. Altogether, the study covers 49% of the total EU crop value.

_

¹⁹ Winter wheat, winter barley, grain maize, oilseed rape, sugar beet, potatoes and vine

Depending per country, based on data availability and relevance: includes durum wheat, carrots, apples, beans, hops, onions, brassica, mushrooms, rice, tomatoes (open & glass), pears, peaches/nectarines, soy, hazelnut, olives, tulip bulbs, apple trees, bell pepper, black currants, citrus fruits, cherry, sunflower and peas

²¹ France, Germany, UK, Poland, Spain, Italy, the Netherlands, Austria and Ireland

2.4 Method, data & process

Method

Regulations 1107/09 and 485/2013 as well as the Water Framework Directive (WFD) as outlined above might lead to reduced availability of active substances for EU agriculture. While due to ongoing dialogue it is not yet possible to produce a definite list, this study makes use of existing academic literature to establish a list of active substances at risk. In particular, it uses a list of 87²² overall and 75 non-UK specific or low risk active substances drafted by The Andersons Centre. Andersons bases their list on ADAS research with DEFRA, the UK's HSE-CRD and the European Commission as original sources²³. The 75 substances identified this way form the starting point for the analysis.

The 75 non-UK specific active substances comprise the following:

Category	Substance name	Likelihood to be lost	Legislation/cut-off criteria	Source ²³
Insecticides	abamectin	High	1107/09 - Endocrine Disruption	WRc 2013
Insecticides	beta-cyfluthrin	Medium	1107/09 - Endocrine Disruption	WRc 2013
Insecticides	bifenthrin	High	1107/09 - PBT /vPvB	CRD 2008 2C
Insecticides	clothianidin	High (by crop)	Bee Health - Neonicotinoids	EU Restriction
Insecticides	deltamethrin	Medium	1107/09 - Endocrine Disruption	CRD 2009
Insecticides	dimethoate	Medium	1107/09 - Endocrine Disruption	CRD 2009
Insecticides	esfenvalerate	High	1107/09 - PBT CRD	2008 2C
Insecticides	imidacloprid	High (by crop)	Bee Health - Neonicotinoids	EU Restriction
Insecticides	lambda-cyhalothrin	Medium	1107/09 - Endocrine Disruption	WRc 2013
Insecticides	spinosad	Medium	1107/09 - Endocrine Disruption	WRc 2013
Insecticides	spiromesifen	Medium	1107/09 - Endocrine Disruption	WRc 2013
Insecticides	spirotetramat	Medium	1107/09 - Endocrine Disruption	WRc 2013
Insecticides	thiacloprid	High	1107/09 - Endocrine Disruption	CRD 2009
Insecticides	thiamethoxam	High (by crop)	Bee Health - Neonicotinoids	EU Restriction
Fungicides	bupirimate	Medium	1107/09 - Endocrine Disruption	WRc 2013
Fungicides	captan	Medium	WFD - Article 7	ADAS 2010
Fungicides	carbendazim	High	1107/09 - Mutagenic	CRD 2008 2C
Fungicides	cyproconazole	High	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	difenoconazole	Medium	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	dinocap	High	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	epoxiconazole	High	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	fenbuconazole	High	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	fluazinam	High	1107/09 - Endocrine Disruption	WRc 2013
Fungicides	fluquinconazole	Medium	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	folpet	Medium	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	hymexazol	Medium	1107/09 - Endocrine Disruption	WRc 2013
Fungicides	iprodione	High	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	mancozeb	High	1107/09 - Endocrine Disruption	WRc 2012
Fungicides	mandipropamid	Medium	1107/09 - Endocrine Disruption	WRc 2013

²² 12 substances (chlorpyrifos, cypermethrin, permethrin, chlorothalonil, 2,4-D, bentazone, bifenox, MCPA, mecoprop, metazachlor, propyzamide and metaldehyde) have been taken out as these are based on UK-specific regulation, aiming to get to EU-wide conclusions resulting in 75 substances

Extended impact assessment study of the human health and environmental criteria for endocrine disrupting substances proposed by HSE, CRD; NEED FOR A PROPER QUOTE

Water Framework Directive implementation in England and Wales: new and updated standards to protect the water environment; NEED FOR A PROPER QUOTE

Regulation (EC) No 1107/2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC;

Commission Implementing Regulation (EU) No 485/2013 amending Implementing Regulation (EU) No 540/2011, as regards the conditions of approval of the active substances clothianidin, thiamethoxam and imidacloprid, and prohibiting the use and sale of seeds treated with plant protection products containing those active substances

steward redqueen

Fungicides	maneb	High	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	metconazole	High	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	metiram	Medium	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	myclobutanil	Medium	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	penconazole	Medium	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	prochloraz	Medium	1107/09 - Endocrine Disruption	WRc 2013
Fungicides	propiconazole	Medium	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	prothioconazole	Medium	1107/09 - Endocrine Disruption	WRc 2013
Fungicides	quinoxyfen	High	1107/09 - vPvB	CRD 2008 2C
Fungicides	silthiofam	Medium	1107/09 - Endocrine Disruption	WRc 2013
Fungicides	tebuconazole	Medium	1107/09 - Endocrine Disruption	WRc 2013
Fungicides	tetraconazole	Medium	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	thiophanate-meythl	Medium	1107/09 - Endocrine Disruption	WRc 2013
Fungicides	thiram	Medium	1107/09 - Endocrine Disruption	WRc 2013
Fungicides	triademenol	Medium	1107/09 - Endocrine Disruption	CRD 2009
Fungicides	triticonazole	Medium	1107/09 - Endocrine Disruption	CRD 2009
Herbicides	amitrole	High	1107/09 - Endocrine Disruption	CRD 2009
Herbicides	asulam	Medium	WFD - Article 7	ADAS 2010
Herbicides	carbetamide	High	1107/09 - Endocrine Disruption	EA Compliance
Herbicides	chlorotolurun	Medium	WFD - Article 7	EA Compliance
Herbicides	chlorpropham	Medium	1107/09 - Endocrine Disruption	WRc 2013
Herbicides	clopyralid	Medium	WFD - Article 7	EA Compliance
Herbicides	dimethenamid-P	Medium	1107/09 - Endocrine Disruption	WRc 2013
Herbicides	ethofumesate	Medium	1107/09 - Endocrine Disruption	WRc 2013
Herbicides	fluazifop-p-butyl	Medium	1107/09 - Endocrine Disruption	WRc 2013
Herbicides	flumioxazine	High	1107/09 - Endocrine Disruption	CRD 2009
Herbicides	fluometuron	Medium	1107/09 - Endocrine Disruption	CRD 2009
Herbicides	fluroxypyr	Medium	WFD - Article 7	ADAS 2010
Herbicides	glufosinate	Medium	1107/09 - Endocrine Disruption	WRc 2013
Herbicides	glyphosate	Medium	WFD - UK Spec. Poll'nt (candidate)	DEFRA List
Herbicides	ioxynil	High	1107/09 - Endocrine Disruption	WRc 2013
Herbicides	linuron	High	1107/09 - Endocrine Disruption	CRD 2009
Herbicides	lenacil	Medium	1107/09 - Endocrine Disruption	WRc 2013
Herbicides	МСРВ	Medium	WFD - Article 7	ADAS 2010
Herbicides	metribuzin	Medium	1107/09 - Endocrine Disruption	WRc 2013
Herbicides	molinate	High	1107/09 - Endocrine Disruption	CRD 2009
Herbicides	pendimethalin	High	1107/09 - PBT	CRD 2009
Herbicides	picloram	Medium	1107/09 - Endocrine Disruption	CRD 2009
Herbicides	pinoxaden	Medium	1107/09 - Endocrine Disruption	WRc 2013
Herbicides	S-metolachlor	High	1107/09 - Endocrine Disruption	WRc 2013
Herbicides	tepraloxydim	Medium	1107/09 - Endocrine Disruption	WRc 2013
Herbicides	terbuthylazine	High	1107/09 - Endocrine Disruption	WRc 2013
Herbicides	tralkoxydim	Medium	1107/09 - Endocrine Disruption	CRD 2009
Herbicides	triflusulfuron	Medium	1107/09 - Endocrine Disruption	CRD 2009
Other	metam sodium	Medium	1107/09 - Endocrine Disruption	CRD 2009
Other	methiocarb	High	1107/09 - Bird Safety	EU Restriction

Active substances labelled 'high risk' are likely to be withdrawn in the short-to medium run, for some substances (e.g. neonicotinoids) this might be for certain crops only (stated as 'by crop' in the table above). 'Medium risk' indicates substances around which there is larger uncertainty or the withdrawal could happen over the longer-run.

Having established the 75 substances with high or medium risk to be removed from the market, the study works with several general assumptions:

• The removal of the 75 active substances is compared to the best currently available alternative solution in the farmers' toolbox and the Good Agricultural Practices (including chemical, biological, mechanical and cultural practices);

- All substances are removed from the market at once and no other substances are introduced in the next five years. Given lengthy R&D and approval processes this might not be an unrealistic scenario;
- The various crops are studied in isolation; crop rotation (or any significant change in the rotations²⁴) or other changes in the production area have not been taken into consideration;
- The analysis is based on 5-year average productivity and costs (2009-2013) thereby averaging out yearly variations in weather conditions and related pest pressure. Further, we look at the average effects for all farmers per crop in each country to obtain a conservative insight at the national and EU level. However, we recognized volatility in yields and prices are important aspects in agriculture. Therefore the results might be rather conservative;
- Yield and variable costs per hectare are subject to change *ceteris paribus*, that means the utilised area and ex-farm prices are assumed to be fixed.

Baring these assumptions in mind, the subsequent approach consists of several steps including (1) the analysis of main threats for the cultivation of the various crops, (2) the currently used and the possibly remaining alternative substances, as well as (3) the extent to which substances are applied. Ultimately, this leads to an estimation of the related yield and costs effects.

The first step is to investigate which weeds, pests and diseases are the main threats to the cultivation of a particular crop. Consequently, the study establishes which substances farmers currently apply to fight these threats. An analysis of the alternatives which remain available after withdrawing the 75 substances leads to the new farming toolbox. It includes Good Agricultural Practices, comprising chemical, biological, mechanical approaches as well as cultural practices. The resulting effect estimations are based on expert's judgement as well as field test. In a third step, the study corrects for the share of the total arable hectare to which an active substance is currently applied. This depends on the share of organic production and areas where pest pressures are low.

²⁴ Under current Common Agricultural Policy (2014-2020), greening measures include mandatory crop rotation depending on the size of the holding

Exhibit 2: Overview of approach

The effects resulting from this analysis represent the lowest value of a possible range of the cumulative implicatations of fungicides, herbicides and insecticides together: the estimations take into consideration that pesticides applied to crops already affected by one pest add less value than once applied to 'healthy' crops.

The research further distinguishes the short-run substitution and the long-run resistance effects of not having the 75 substances available. The former refer to immediate effects from shifting to treatment with best alternatives. Long-term resistance effects might occur over time once weeds, diseases and pest will have built a certain degree of resistance against the remaining alternative substances. Especially for specialty crops, given the often few remaining alternatives, expected future resistance is an important factor. Agronomists fear that the risk of resistance could spark a chain reaction: reduced availability of control solutions implies more resistance risk, which implies less efficiency of remaining alternatives. A lack of strong pest control measures could therefore result in losses greater than the references taken into account.

Next to yields, the availability of substances also influences the variable costs of production. Variances in efficiency of the remaining substances might lead to farmers changing the treatment frequency and applying pesticides that are more or less expensive. Consequently, farm input costs may vary.

Summarizing, the study focuses on and differentiates between:

- Short-term substitution effect on yields and costs of production
- Long-term resistance effect on yields

In addition, for some crops the quality of the output might be affected as the crop output cannot be sold anymore as premium quality. However, as the ex-farm price is assumed to be fixed (see above) this is not explicitly taken into account²⁵.

Building on Exhibit 2, the section below illustrates the approach, using the example of wheat in France. The study does this by applying the yield and costs changes as identified by farm experts²⁶ to the actual base figures²⁷.

²⁵ This may be a conservative approach, non-compliance with marketing standards will vary ex-farm prices

 $^{^{\}rm 26}$ Yield and production costs changes as identified by Arvalis, France

²⁷ Average production and costs data for French wheat 2009-2013, Eurostat & Farm Accounting Data Network

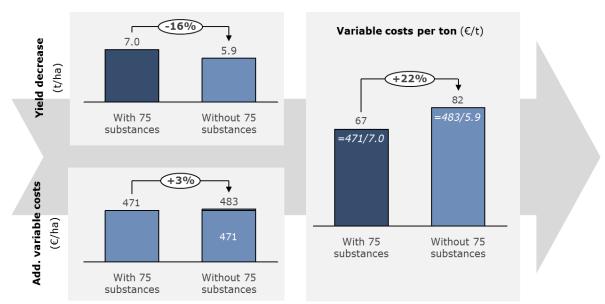


Exhibit 3: Farm-level effects - French wheat

Farmers in France currently harvest 7.0 tons of wheat per hectare. Without the 75 substances (see Appendix for full list) the yield is 16% lower, 5.9 tons per hectare. At the same time, production costs rise by 3% from the current €471/ha to €483/ha. That is mainly due to additional treatment to protect the crops against pests. Taking these two effects together, the costs per ton increase with 22%.

We subsequently apply the effects per hectare to the total agricultural production area of wheat in France²⁸.

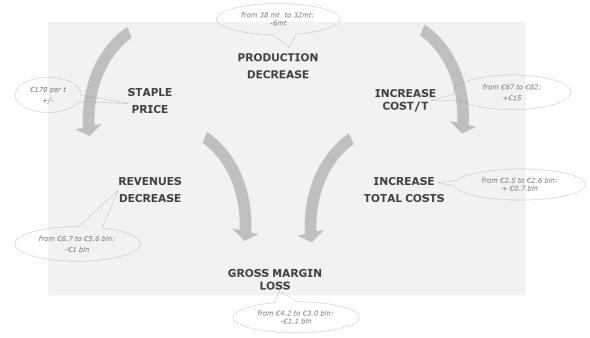


Exhibit 4: Changes in farm income, costs & gross margins for French wheat

The average annual production of wheat in France of the last five years was 38 million tons. A yield change of -16% (see Appendix for details) is expected to lead to a decrease of output, lowering the annual production without the 75 substances to 32 million tons. This

 $^{^{28}}$ This is possible as changes of yield effects incorporate national average levels of pests threats based on the experience of 2009-2013

affects farmers on the revenues as well as on the costs side. Assuming that the price that farmers receive for a ton of wheat is €178²⁹, the total revenues of French wheat farmers decreases from €6.7 billion to €5.6 billion. This is a loss of €1 billion. On the other hand, costs per ton rise due to additional crop protection and application costs of a total of €0.1 billion. The two effects taken together imply that French wheat farmers' gross margins³⁰ decrease by €1.1 billion from €4.2 billion to €3 billion. Put differently, due to the changing availability of crop protection substances, French wheat farmers are expected to lose out on €1.1 billion of gross margins.

Data & process

The study uses data provided by technical institutes and representatives of farmers' organisations of the various countries (the table below depicts all parties involved). For a full list of sources please refer to the Appendix.

Table 1:	Overview	of contributing	parties
----------	-----------------	-----------------	---------

France	Germany	UK	Poland	Spain	Italy	NL	Austria	Ireland
UIPP	IVA	СРА	PSOR	AEPLA	Agrofarma	NEFYTO	FCIO	APHA
FNSEA	DBV	NFU	Kleffmann Group	AVA-ASAJA	Coldiretti	LTO	LK Oberöstrreich	СРА
Arvalis Institute	LK NRW	The Andersons Centre	Research Institute of Horticulture (IO)	UPA	Confi- agricoltura	Wageningen University	LK Niederösterreich	Teagasc
Institut Technique de la Betterave	Humboldt Forum		Institute of Plant Protection (IOR)	Coorperativas Agro- Alimentarias		Agrifirm	LK Steiermark	
Institut Français de la Vigne et du Vin	Bavarian State Research Center for Agriculture		Poznań University of Life Sciences	AIMCRA		KAVB, Agrodis	LK Burgenland	
CTIFL	DLR Rheinpfalz		National farmer associations & unions ³¹	COEXPHAL		LTO- glaskracht, Agrodis	AWI-BMLFUW	
UNILET/ANPLC	Center for Hop research Hüll			ACOPAEX		ZLTO		
Cénaldi				DCOOP		IRS		
Terres Inovia								

The execution of this study included intensive contact with the various parties³² mentioned above. These experts followed the steps outlined in Exhibit 2 and also provided information regarding the yield, the ex-farm price and area affected in the current situation. In order to ensure consistency of data input from the various countries we held several face-to-face data validation and, at a later stage, result verification sessions.

After having provided this background on the methodology, the report first describes the farm-level income effects on EU-level and subsequently has separate country chapters for

²⁹ The price could be negatively affected by an additional loss in quality and could be positively affected by decrease in supply; for simplicity we assume a stable price

³⁰ Gross margin is defined as the difference of total revenues and total variable costs. The choice to report on gross margins has been made due to data availability: while the official sources on variable costs in various countries provide estimates in the same range information on fixed costs lack consistency

³¹ Farmer associations and unions involved in Poland: National Council of Agricultural Chambers, Federation of Agricultural Producers Unions (FBZPR), Polish Fruit Growers Association, National Association of Blackcurrant Growers, National Association of Rapeseed and Protein Crops Producers, National Association of Sugar Beet Growers, Polish Association of Potato and Agricultural Seed Growers, Polish Association of Cereal Growers, and Polish Association of Maize Producers

³² Except from the UK were we used the insights from Anderson's "The effect of the loss of plant protection products on UK agriculture and horticulture in the wider economy"

steward redqueen

all countries included in the scope of the study. On EU-level the study also elaborates on the value of the 75 substances with regard to employment, trade & competitiveness, land use and carbon footprint. In the appendix more details on the effects per crop/country as well as a detailed methodology description, substance list and references are presented.

3 EU-level impact

This section provides insights into the effects of banning the 75 crop protection substances on EU level for the staple crop covered in the study.

3.1 EU Farm-level income effects

EU-level results are based on weighted averages of the national figures. Exhibit 5 below depicts for which countries national information was available for the various staple crops analysed.

Exhibit 5: EU-crop production basis for extrapolation (in million ton)

The farm-level data for wheat, barley, oilseed rape, potato, sugar beet and maize on which the analysis is based, cover between some 50% and 80% of the total EU production of the particular crops. The higher the percentage of output covered on a country-by-country level, the more likely the extrapolation is representative for the EU as a whole. For details on the extrapolation please refer to the Appendix. Table 2 below summarizes the total crop

production as well as the typical area a crop is cultivated on in EU28 for an average year³³. These official information form the basis against which the changes are compared to.

Table 2: Overview crop agriculture in EU28³⁴

Crop	Area (million ha)	Yield (t/ha)	Output (million ton =Mt)	Price (€/ton)
Wheat	25,8	5,3	136,7	172
Barley	12,6	4,4	55,4	152
Maize	9,0	6,8	61,5	180
Oilseed rape	6,4	3,3	21,3	349
Potatoes	1,9	31,7	58,8	170
Sugar beet	1,6	70,4	114,0	31
Vine	3,2	7,1	23,1	721

Table 3 below provides an overview of the immediate relative changes of tons harvested per hectare compared to a situation in which the best remaining alternative are used for the main European stable crops. You might notice that for some crops the yield changes for the UK are lower than in other countries. This is because for the UK we drew on The Andersons Centre's study. While we used the same substance list as that study, The Andersons Centre focused on substances at high risk to be lost only.

Table 3: Overview short-term yield effect per country/staple crop

	EU average	France	Germany	UK	Poland	Spain	Italy	NL	Austria	Ireland
Wheat	-15%	-16%	-18%	-12%	-5%	X	-14%	-18%	-15%	-20%
Barley	-17%	-19%	-18%	-10%	X	X	-14%	-18%	-20%	-20%
Maize	-10%	-8%	-2% ³⁵	X	-5%	X	-14%	X	-10%	X
OSR	-18%	-5% ³⁵	-17%	-18%	-20%	X	x	X	-25%	x
Potatoes	-20%	-10%	-29% ³⁶	-12%	-20%	X	-40%	-15%	-25%	-25%
Sugar beet	-37%	-35%	-49%	-12%	-30%	-44%	X	-36%	-35%	X
Vine	-22%	-22%	x	X	X	-13%	-30%	X	-20%	X

We analysed the added value of the 75 substances for all crops and countries in scope of this study following the approach discussed above. Exhibit 6 presents the results for farmers in the EU. All details for crops/countries can be found in the Appendix.

³³ Based on Eurostat farm statistics 2009-2013

³⁴ Average prices for EU in 5-year period

³⁵ note the yield effect refers to banning NNIs only

³⁶ given data availability, compared to untreated situation

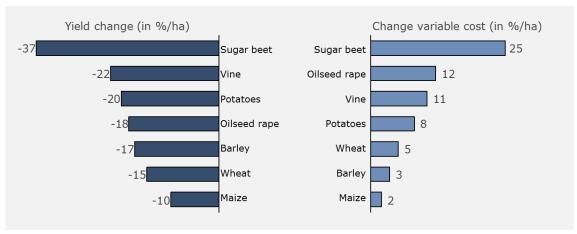


Exhibit 6: Yield and variable costs changes (in %/ha)

Depending on the crop, the utilisation of the 75 substances allows EU farmers to harvest from 10% to some 40% more tons per hectare than without the substances. With the 75 substances weed, disease and pest pressure on the crops is lower, allowing the crops to grow larger. At the same time, variable costs are with the utilisation of the 75 substances up to 25% lower than without.

Considering long-term resistance effects (not shown in Exhibit 6) the value of the 75 substances is expected to be even higher. Depending on the number of alternatives that remain available as well as their effectiveness, pests might become immune to the treatment with the remaining alternatives. According to the national farm experts, for cereals this long-term effect is estimated to add an additional 5% of yield change. For sugar beet, potatoes and vine this is about 20% additional yield effect (for full reference of farm experts refer to the Appendix).

The other effect of changes in the farming toolbox concerns the variable production costs. The 75 substances reduce the variable production costs by amongst others improved effectiveness. For most staple crops the effect adds less than 10% additional variable costs, however for sugar beet production costs can increase by some 26% per hectare.

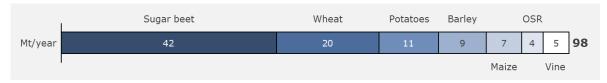


Exhibit 7: Output changes (in million ton per year)

In total, EU crop output is currenty 98 million ton (=Mt) more than in a situation without the use of the 75 substances. In other words, the benefit of having the 75 substances in the farming toolbox is 98 million ton additional crop output, 42 million tons of which are sugar beet. These results are driven by the yield change (see Exhibit 6) as well as the area on which they are typically cultivated (see Table 2).

To provide some perspective, the 98 million ton crop output at risk represents 21% of the EU's current total production of the 7 key crops of in total 471 million tons.

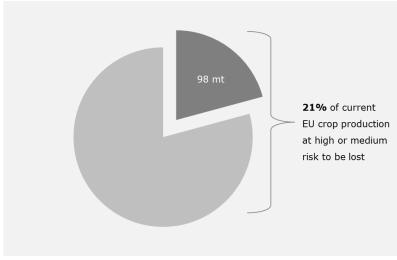


Exhibit 8: Share of EU production (volume) of 7 staple crops at risk

Applying the short-term yield and costs changes discussed above to the current situation provides insights into the changes in terms of the gross margin of EU farmers.

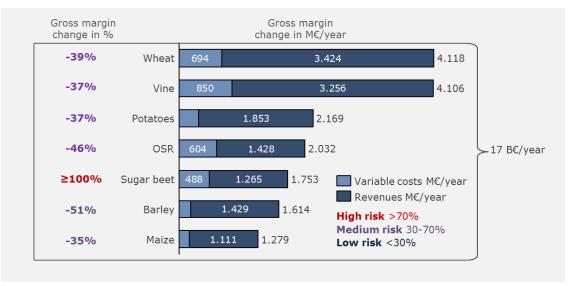


Exhibit 9: EU-wide changes in revenues, costs & gross margins

To summarize, in the short run EU-farmers of the crops considered in this study would lose €17 billion gross margin. Vine and wheat are the crops that lose out most, both ca. €4 billion per year. In terms of profitability, sugar beet cultivation is most affected. The total change is mainly driven by reductions in farm income (€14 billion) consequently to fewer output generated. To a lesser extent, additional variable costs of €3 billion influence the total result as well. The results further imply that farmers lose between 35% and 100% of gross margin. Especially for sugar beet, it is questionable whether the crop would still be cultivated in the EU for purposes other than for crop rotations.

To elaborate on the farm income results above, farmers put a lot of effort into stabilizing their yields and anticipating on price changes but incomes are subject to volatility. Among others, pest pressure has a large impact on annual yields. Its degree and variation is largely driven by weather conditions and therefore vary widely per year. Also changing climate conditions add to the extent and variation.

steward redqueen

The current crop protection toolbox helps farmers to react fast and effective on upcoming pests and keep yield volatility under/in control. Several crop experts involved in the assessments indicated that an increase in yield volatility and therefore crop prices is an important additional effect. This is not examined in detail in this assessment, but the Exhibit below exemplifies the case of winter wheat in Ireland. Research from Teagasc, Irish public agricultural research, show that not only average yield vary each year, but also break-even yield. This, as the prices of farm inputs and its use vary each year depending on weather conditions and pest pressure. A smaller crop protection toolbox will not only affect the extent of the yields, but also downward volatility during years with challenging farm conditions.

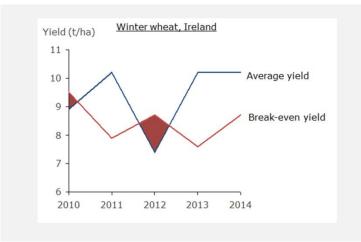


Exhibit 10: relation between prices of cereals and cereal-based products³⁷

3.2 EU Farm-level employment effects

Within the 9 countries in the study, according to official statistics 3.5 million jobs relate to crop agriculture³⁸. Allocating these 3.5 million jobs to the various crops based on the value of the crops reveals that 1.5m jobs relate to the 7 staple and 24 specialty crops in scope of the study (see Exhibit 11).

³⁷ Crop Production in Ireland and impacts of Regulation 1107/2009, Teagasc 2015

³⁸ Source: Eurostat, for the Netherlands LEI/ WUR

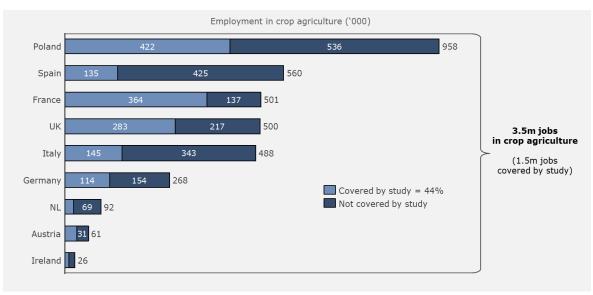


Exhibit 11: Total employment in crop agriculture (in '000)

As Exhibit 9 shows, the 75 substances have a large influence on the economic viability of the cultivation of certain crops. This also translates into certainty of employment for jobs related to these crops. Exhibit 12 combines the impact on economic viability from Exhibit 9 and the amount of jobs in crop agriculture from Exhibit 11. For jobs related to the crops and nice countries covered by the study the exhibit consequently provides an overview of the contribution of the 75 substances to the certainty of employment. Three risk categories are distinguished: low, medium, high³⁹. This depends on the crop's gross margin variation. The results show that some 45% of crop agriculture employment or some 670.000 jobs are at high or medium risk. Of the 1.5m jobs in scope, 313.000 or some 17% have a high risk of job loss. Most of the jobs at high risk are at German and Spanish farms. In Spain, this is driven by the high yield losses in tomato, citrus, olives and cherry, while the 'thin' margins in Germany for wheat, barley and sugar beet underline the contribution of the 75 substances.

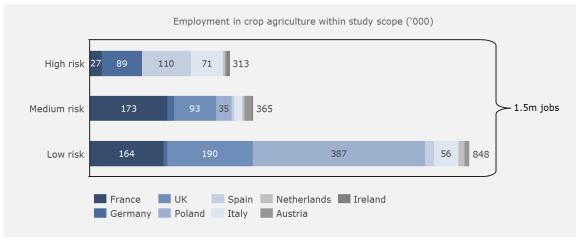


Exhibit 12: Dependency of crop agriculture employment on 75 substances

The risk of job loss per crop depends also on the ability of the farmers to shift to alternative crops and the impact the 75 substances have on the economic viability of these alternatives. E.g. if the profitability of cultivating wheat is reduced to a large extent,

³⁹ high=above 70%, medium=30-70%, low=up to 30% gross margin loss

cultivating barley might still be profitable. In that case jobs related to wheat cultivation might not be affected. This might be different for specialty crops where first of all switching involves higher costs and secondly also alternative crops might greatly be affected by changes in the farming toolbox. To illustrate this point, the alternatives for producing fruit trees, bell pepper and tulip bulbs in the Netherlands use similar crop protection toolboxes. Therefore, we expect that producers of these crops have limited ability to move to other crops, which underlines the high risk of job loss.

3.3 EU- self-sufficiency & trade effects

Given the farm-level changes, changing yields and costs also affect the competitiveness of the EU agriculture and thus the EU's self-sufficiency and trade balance of agricultural commodities.

The EU is currently a net exporter of wheat, barley and potatoes. On average, every year some 13Mt of wheat, 3Mt of barley and 1Mt of potatoes are exported to countries outside the EU. Banning the 75 substances leads to a situation in which, instead of exporting, the EU will need to import these crops to satisfy its consumption needs. As on average the yield for wheat decreases by 14%, the total wheat production decreases from 137Mt to some 117Mt. This implies that the EU will have to import 5Mt to cover the local demand of 123Mt. For barley and potatoes the trade deficits would be 6Mt and 10Mt respectively.

With the 75 substances on the market the EU is consequently less dependent on imports. It is important to keep in mind that while for cereals imports are readily available, importing potatoes is given availability on the world market and transportation issues with this crop less straight forward.

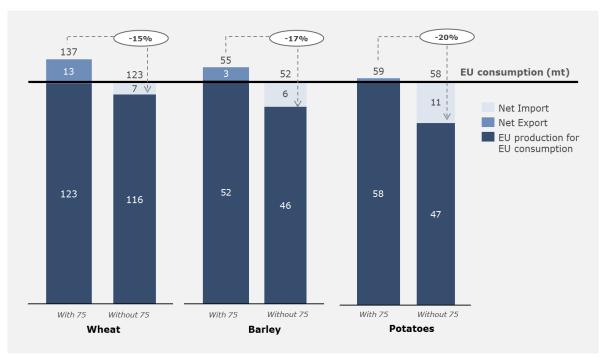


Exhibit 13: Trade balance shift for currently net exported crops (Mt)

The EU's demand for maize and oilseed rape is even with the 75 substances partly fulfilled by imports. Out of the 65Mt of maize consumed in the EU annually some 4Mt are currently imported from outside the EU. Based on the analysis of yield changes we estimate that this will increase by 6Mt to a total of 10Mt needed to be imported in case the 75 substances are

steward redqueen

banned. This implies that imports more than double. For oilseed rape, removing the 75 substances from the farming toolbox leads to an additional consumption gap of 4Mt, summing to a total of 7Mt of imports (+115%). The EU is currently self-sufficient for sugar beet and vine. This will change in case the 75 substances are not available anymore, requiring the EU to import some 42Mt sugar beet and 4Mt vine from outside.

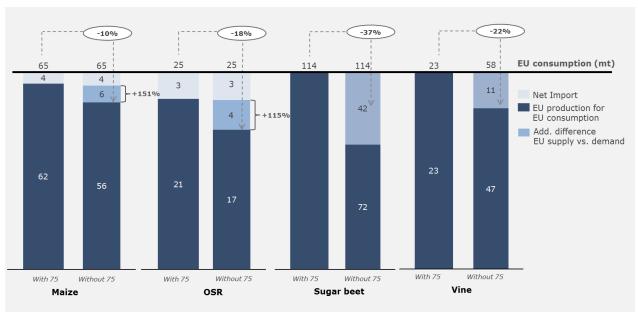


Exhibit 14: Trade balance shift for net imported crops (in million ton)

3.4 Broader ripple effects

Lower production and the trade balance shifts of EU's largest crops presented in Exhibit 13 and Exhibit 14 will affect both EU and worldwide trade of agro-commodities. On their turn, these consequences will also trickle down the agri-food chain up to the consumers. Based on other research, we zoom in on cereals to explain some of the potential broader effects in Europe.

The crops wheat, barley and maize represent two-thirds of all cereal crops produced and consumed in the EU^{40} . Of these, wheat is also EU's largest crop, while the EU is also the largest producer globally (20% of total). Therefore 21 Mt less EU wheat (-15% EU yield) has a significant effect by decreasing global production by 3%. This has implications in as well as outside the EU.

-

⁴⁰ European Commission, Eurostat

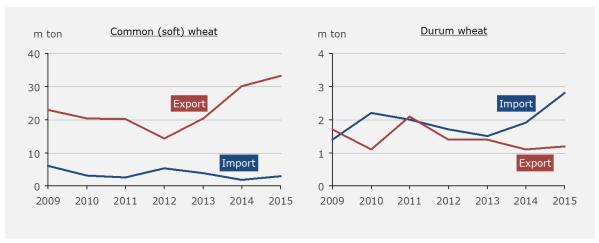


Exhibit 15: Common and durum wheat trade in the EU

The exhibit above shows the EU trade of two key types of wheat: durum and common (soft) wheat. Without the 75 substances, the EU will be move from net export to net import in soft wheat for mostly food and fees use. Regarding durum, the EU will increase its current imports for mostly human consumption.

In reality, export and import situation varies widely per EU country. The two main soft wheat 'surplus countries' Germany and France represent 76% of all EU wheat exports and supply many other EU countries⁴¹. The 75 substances support more than half of France exports and all exports in Germany⁴². Without these, France will be the only significant exporter in Europe and most other EU countries will be more dependent on producers outside the EU. Currently, half of EU soft wheat exports are provided to Middle East & Northern Africa (see the exhibit). These countries could face higher import prices by switching to other sources.

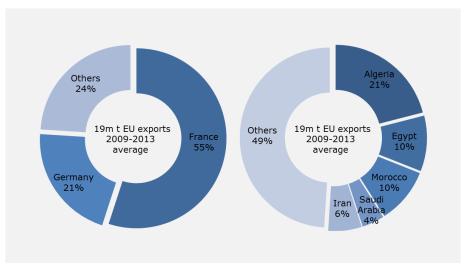


Exhibit 16: Common wheat exports by EU exporting countries (left) and destinations (right)

Lower durum wheat production will mostly affect Italy, the main producer and consumer in EU. Currently, the country imports 30% of its durum for producing its pastas and other food

⁴¹ DG Agri, HGCA 2013

⁴² See Exhibit 16, average 2009-2013 exports of France is 10.5 m t (55% of 19m t), Germany is 4 m tons (19% of 19m t). The 75 substances support 6 m t in France (see Chapter 4) and 4 m t in Germany (see Chapter 5).

products, and represent almost all imports of the EU's total durum wheat imports (1.5 Mt, 80% of EU imports).

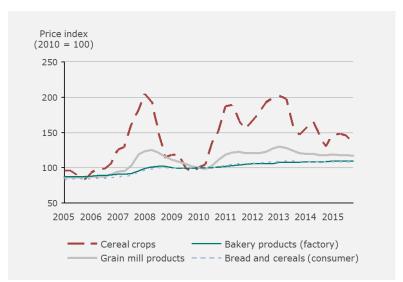


Exhibit 17: relation between prices of cereals and cereal-based products

In the EU, 44% of wheat is used for food products, 41% for feed and the other 15% mostly for industrial use⁴³. As its main users, the wheat procurement costs for the livestock sector and food processors (millers) will increase as both local and imported prices are likely to rise with 3% less global production. Furthermore, wheat import prices could be higher in the short run before the wheat market balances out the changes and price differences in the market.

The Berlin-based Humboldt Forum researched the potential price changes of cereals in EU in case of lower productivity. Based on this, 15% lower EU yield translates into 5-7% higher wheat prices⁴⁴. IFPRI, a leading food policy research body, expects that all cereal prices and other key agro-commodity will steadily increase in the next decades. Any price increase implies an extra increase on top of the current trend.

According to EC food price monitoring, prices typically trickle down to consumers. However, the relative share of wheat in cereal-based products is relatively small. For example, wheat price represents about 10-15% of the average bread price for the consumer. In total, every wheat price increase of EUR 10 could potentially increase EU consumer costs for bread by EUR 700 m and leaking out of the European economy.⁴⁵

3.4 Land use

The previous section discussed the implication of having the 75 substances available for farm income and self-sufficiency of the EU. This section elaborates on the land use effects.

Farmers in the EU28 cultivated 176 million hectares of land (the utilised agricultural area) in 2010. This represents two fifths (40%) of the total land area of the EU28⁴⁶. The key staple

⁴³ DG Agri, cereals balance

⁴⁴ HFFA 2013

 $^{^{45}}$ EUR 10/t wheat price change is $\pm 5\%$ of the wheat price. The wheat price represents 10-15% of the average bread price of EUR1.50/bread. Therefore, a wheat price increase could add 1cents per 500 grams bread. In total, this sums up to EUR 700m for 38m t bread in Europe (AIBI Bread Market Report 2013, Jan 2015).

⁴⁶ Eurostat, Agricultural Census 2010

crops wheat, barley, maize, sugar beet, oil seed rape, potatoes and vine make up some 61 million hectares of the total area used for agriculture.

With lower average yields per hectare (see above) additional land would be needed in order to produce the same amount of output. Using the new average EU-yields as starting point, this means that 9 million additional hectares would be needed to produce the same tons of staple crops, an increase of 15% compared to the current situation. This equals one third of the total agriculturally used area in France or the current areas used for cultivation of the key staple crops in the UK and Poland together.

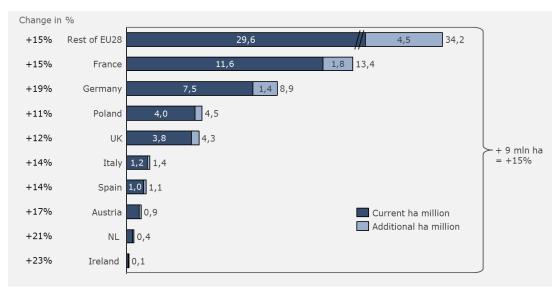


Exhibit 18: Current & additional area for key staple crops (in million hectares)

The relative change per country depends amongst others on the share of the total agricultural area of a country of the key staple crops analysed in this study.

Given the limited availability of farmland in the EU it is uncertain whether this additional farmland would be on EU territory. Also in other areas of the world farmland is competing against the construction of roads, houses and other urban needs as well as being lost due to erosion⁴⁷. Decreases in productivity per hectare hence add pressure on the competition for land.

It is also important to note that the most productive land is currently already been exploited. Most probably the additional land, if any, will not be so productive unless the technology allows so.

3.5 Carbon footprint

In the recent discussions around climate change carbon footprint is gaining more and more attention of the public. In light of this study, carbon footprint goals of the European Union are helped made possible by the use of pesticides. That is for two reasons: the effect of the 75 substances on land use and the treatment frequencies are important drivers of the carbon footprint of crop cultivation.

Looking forward, with the 75 substances phasing out, there are two possible scenarios regarding the way in which any gap between local production and local demand can be filled. Firstly, more land within the EU28 could be made available to produce the crop

⁴⁷ Problems of agriculture – loss of land and decreased varieties

outputs and secondly, additional amount of crop output could be imported from outside of the EU. Both scenarios have implications for the footprint of the crops consumed in the EU28. Exhibit 19 provides an overview of relevant sources of emissions for both scenarios.

Exhibit 19: Carbon footprint effects related to changes in farming toolbox

Currently, the cultivation of wheat, barley, maize, oilseed rape, potatoes, sugar beet and vine in the EU causes the emission of 83 million ton CO2 equivalent. The two main drivers for this are the use of fertilizers and diesel use. The other emissions on the current area arise from other farm-inputs e.g. when crops are dried. This constitutes the current situation without the 75 and is depicted on the left hand side of Exhibit 20 marked as 'current area'.

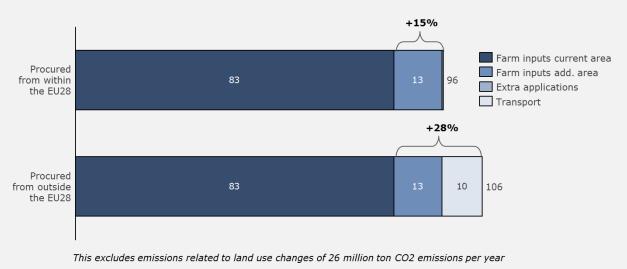


Exhibit 20: Carbon footprint of key staple crops related to changes in toolbox (in million ton CO2 eq.)

In the upper scenario in which additional land within the EU is used to compensate for lower yields per hectare the footprint of the key staple crops could rise by 15% from using a larger area, changes in the amount of farm inputs and the treatment frequency. These are annual effects. In addition, if extra land has to be converted to agricultural area there would be annual emissions of additional 26 million tons for the coming 20 years⁴⁸. The total change in the overall footprint of the 7 key staple crops would consequently rise by about the half (47%⁴⁹).

The other option to fulfil European crop demand is to import. In that case the emissions of crop output would rise by 28%, some 23 million ton. We assumed that all crops are to be

⁴⁸ 57 t CO2 eq. emissions for biomass on one hectare with conversation factor of 20 years (IPCC Guidelines Vol. 4: Agriculture, Forestry and Other Land Use (AFOLU))

 $^{^{49}47\% = (83+13+26)/83}$

steward redqueen

imported from the US⁵⁰. In terms of yield per hectare and farm inputs used, crop production in the US is similar to the EU. The main difference between the footprints of crop produced in the US and in the EU and then also the emissions related to transport. This might be different for crop imports from other parts of the world (e.g. different fertilizer use in Brazil). If additional land has to be converted to agricultural area to fulfil the EU's additional demand, total annual emissions of imported crops including emission from land use changes might increase by 59%⁵¹ or 49 million ton. For details on the methodology please refer to the Appendix.

To provide some perspective, the EU's carbon footprint would increase by 1%. The total annual carbon emissions of the EU sums to some 4,600 million ton CO2 eq.⁵². Agriculture constitutes some 10% or 443 million ton of that, non-livestock agriculture relates to 295 million ton. This study focuses on the key staple crops, good for about 30% of all non-livestock agricultural emissions. This corresponds with the share of key staple crops of total agricultural area used in the EU (see description land use). In case of the lower yield being compensated by more yet to be converted agricultural area in the EU, emissions for these crops would rise by 45% or if imported by 57%.

In monetary terms, given a price of €10 per ton of carbon, the additional emission could sum to €500 million⁵³ for imported crop output produced on converted agricultural land.

After elaborating on socio-economic and environmental implications on EU level, the sections that follow present the key effects on country level.

 $^{^{50}}$ Distance of 7.895km with 14g of emissions per km/ton

 $^{^{51}}$ 47% = (83+13+10+26)/83

⁵² Eurostat <u>Greenhouse gas emission statistics</u>

 $^{^{53}}$ €10 x 50 (13+11+26) million ton CO2 eq. = €500 million; €10 per ton of carbon might be a conservative estimate; average ETS price 2009-2013

4 France

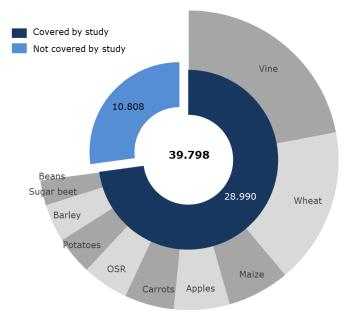
4.1 French key effects

With the current farming tool box available, the French production of **7 key staple crops**⁵⁴ is **23Mt higher** and generates **€5 billion more value** per year if the 75 substances at risk are not included.

In addition, the **economic viability** of the production of **specialty crops**⁵⁵, **2Mt** of output and **€1 billion** would be challenged without the 75 substances.

Further results include:

- In the short run, wheat, barley, maize, potato and vine would face 10-20% lower yields, while the yield of sugar beet decreases by 35%;
- At the same time, variable production costs for the staple crops would increase by up to 10% per hectare;
- Yield loss for specialty crops would range from 60-100% and variable production costs increase by up to 50%.
- In value, vine would be most affected with €2b of value loss, while sugar beet would show the largest decrease in profitability (-60%) of the staple crops;
- French crop agriculture employs 500,000 direct jobs of which 364,000 jobs relate to the crops covered by the study.


4.2 Agriculture in France

Indicating the relative importance of the agricultural sector in France, agriculture makes up 1.7% of the French GDP and some 3% of the total employment is with the sector. France is among the largest agricultural exporters in the world and a major agricultural power in the EU, accounting for 16% of all its agricultural land. Fifty per cent of the French territory is agricultural land, while 30% is covered with forests. More than half of French farms are mostly devoted to animal production. France accounts for 17% of the total cow milk collected in the EU and 12% of the total meat produced (20% for cattle, 12% for sheep & goats and 9% for pigs). ⁵⁶

⁵⁴ Wheat, barley, potato, maize, rapeseed, sugar beet and vine

⁵⁵ Beans, apples and carrots

⁵⁶ INRA science and Impact, Agriculture in France

Exhibit 21: French agricultural production value (in € million)

The total average annual French agricultural production value 57 of the last five years was some \in 40 billion. The study focusses on the staple crops wheat, barley, grain maize, oilseed rape, potatoes, sugar beet and vine. In addition, the minor crops apples, carrots and beans are included for France. The selection is based on data availability and relevance of the crops. As Exhibit 21 shows, the crops covered by the study represent some 73% (28.990/39.798) of the total French agricultural production value.

Table 4: Overview French crops⁵⁸

Crop	Area (1000 ha)	Yield (t/ha)	Output (million ton)	Price (€/ton)
Wheat	5.404	7,0	37,8	178
Barley	1.666	6,4	10,7	153
Grain maize	1.687	9,0	15,2	176
Oilseed rape	1.507	3,4	5,1	388
Potatoes	159	43,4	6,9	237
Sugar beet	387	89,2	34,5	29
Vine	768	5,9	4,5	1.935
Apples	44	28,0	1,8	822
Carrots	13	56,4	0,6	636
Beans	28	11,8	0,3	224

4.3 Effect of 75 substances on yield and variable costs

Exhibit 22 provides an overview of the consequences related to possibly losing the 75 substances for the staple and specialty crops in France.

⁵⁸ Eurostat, Farm statistics, average 2009-2013

⁵⁷ Eurostat; Economic accounts for agriculture - values at current prices

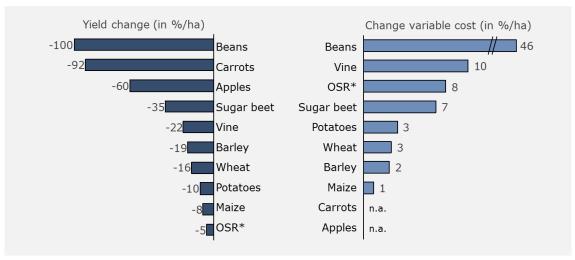


Exhibit 22: Short-term yield and variable costs changes (in %/ha)

For the staple crops, the 75 substances allow farmers to harvest some 10-35% more tons per hectare than without the substances. With the 75 substances weed, disease and pest pressure on the crops is lower, allowing the crops to grow larger. Effects for durum wheat, oats and silage maize are expected to be in the same order of magnitude: some 17%, 15% and 8% respectively additional yield related to using the 75 substances per hectare. For oilseed rape, as a consequence of data availability, only the added value of NNIs has been taken into account (5% yield benefit).

For the longer term, the 75 substances have an additional value as they support the avoidance of resistance effects. The risk of emerging resistance effects varies per threat: resistance around fungal diseases mainly affects cereals and potatoes while weed resistance mainly affects cereals and sorghum. For cereals the additional long-term yield effect sums to some 3%, for potatoes to 5%, for sugar beet to 10%. For vine the total short and long-term value of the 75 substances is up to 50%.

The other change is regarding to variable costs. The 75 substances reduce the variable production costs by amongst others improved effectiveness. For most staple crops the effect adds less than 10% additional variable costs, however for specialty crops these costs can increase by up to 50%. Fewer pesticides are applied less frequently. Put differently, the treatment frequency will increase (+ 0.15 treatment/ha on maize, to + 0.85 treatment/ha on barley in average) in the case of the farming tool box being less well equipped.

For potatoes, experts also expect a large quality effect. This might affect the ex-farm price for which farmers can sell their output. In some cases, this can cause extensive damage preventing the sale of potatoes to a large extent.

The size of the farming toolbox is not only important for crop cultivation but also for seed production. For the toolbox of seed producers the EU legislations might cause a reduction of active substances from 77 to 51 which relates to a reduction from 717 to 263 products used ⁵⁹. This influences the quality of seeds produced, likely to cause ripple effects to industries using the seeds. That is as seed quality plays a role in crop protection at the beginning of the cultivation cycle. Showing this, a 2011 study by the FNAMS estimates that 90% of diseases present at an early stage can be directly controlled through the intrinsic quality of seeds in terms of health or indirectly with seed treatments (13 crops studied).

-

⁵⁹ FNAMS

4.4 Effects on incomes

The lower yields (see Exhibit 22), given a fixed arable area, imply that the overall crop production in France will decrease without the 75 substances. As Exhibit 23 shows, in total French farm output is currently 23 Mt higher for staple crops and 2 Mt for specialty crops.

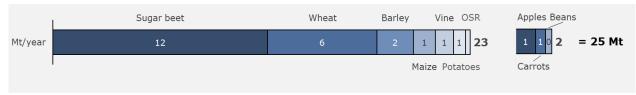


Exhibit 23: Output changes (in Mt/year)

Compared to other crops, the 75 substances have relatively the largest influence on the amount of sugar beets produced in France (12 Mt/year). This is driven by the relatively large value the 75 substances add to sugar beet cultivation (35% extra yield) as well as the relatively large area where sugar beet is cultivated in France (387.000 ha).

Depending on ex-farm prices and the changes in variable costs, the gross margins earned on cultivating these crops is affected as well.

Exhibit 24: Gross margin effects (in € million/year)

As shown, in total French farmers gain \le 6 billion gross margins per year from having the 75 substances. The total change between the two scenarios is mainly driven by revenue losses (\le 5.4 billion) and to a lesser extent influenced by variable costs (\ge 0.5 billion). Gross margin gains in vine and wheat make up the majority of the overall effect. In value, vine would be most affected by a decrease of the farming tool box with \ge 2 billion in value loss, while sugar beet would show the largest decrease in profitability (-62%) of the staple crops. Overall the largest profitability of carrots and beans is most affected. As the production of beans is assumed to decrease by 100%, there are no additional variable costs. Producer prices for sugar beet per ton are relatively low compared to prices of other crops, therefore the total revenue effect for sugar beet is not among the largest. As explained earlier, the results do not take any crop rotation effects into consideration.

steward redqueen

As the gross margins earned on cultivating specialty crops like beans, carrots and apples decrease significantly, there is the chance that cultivation of these crops will no longer take place in France. This is because these crops are at a high risk of losing their economic viability.

For effects on jobs, land use and the carbon footprint please refer to the overall EU chapter.

5 Germany

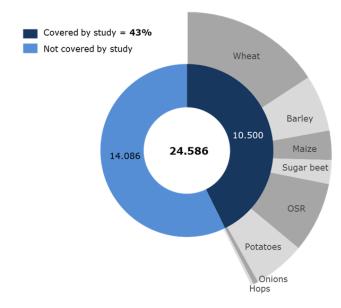
5.1 German key effects

With the current farming tool box available, the German production of **5 key staple crops**⁶⁰ is **23 Mt higher** and generates **€2.4 billion more value** per year if the 75 substances at risk are not included.

In addition, the **economic viability** of the production of **specialty crops**⁶¹, **34.000t** of output and **€63 million** would be challenged without the 75 substances.

Further results include:

- The economic viability of the staple as well as specialty crops would, without the 75 substances, be put under pressure;
- Wheat, barley, maize, potato would face 20-30% lower yields, while the yield of sugar beet decreases almost 50%;
- At the same time, variable production costs for the staple crops would increase by about 5% per hectare, for sugar beet and onions by some 30%;
- The 75 substances add significantly much value to specialty crops;
- In value, wheat would be most affected with €0.7b of value loss;
- German crop agriculture employs 268,000 direct jobs of which 114,000 jobs relate to the crops covered by the study.


5.2 Agriculture in Germany

Indicating the relative importance of the agricultural sector in Germany, agriculture makes up 0.8% of the German GDP and some 2% of the total employment is with the sector. With around 17 and 11 million hectares respectively, agriculture and forestry take up more than half of the area of Germany. With 59 percent of the total crop growing area, grain cultivation takes up most of the arable land, which makes it the most important crop. German agriculture has achieved a massive increase in productivity over the last decades, a fact which is reflected in increased cereal yields per hectare and the increasing milk output of cows. In 1950, a farmer produced enough food to feed 10 people. Today, this figure has risen to around 140 people (without animal feed from abroad).

37

⁶⁰ Wheat, barley, maize, OSR, potatoes and sugar beet

⁶¹ Onions, hops

Exhibit 25: German agricultural production value (in € million)

The total average annual German agricultural production value 62 of the last five years was some \in 25 billion. The study focusses on the staple crops wheat, barley, maize, oilseed rape, potatoes, and sugar beet. In addition, the minor crops hops and onions are included. The selection is based on data availability and relevance of the crops. As Exhibit 25 shows, the crops covered by the study represent some 43% (10.500/24.586) of the total German agricultural production value.

Table 5: Overview German crops⁶³

Crop	Area (1000 ha)	Yield (t/ha)	Output (million ton)	Ex-farm price (€/ton)
Wheat	heat 3.197		23,9	163
Barley	1.673	6,2	10,4	150
Maize	488	9,8 4,8		169
OSR	1.471	4,3	6,3	308
Potatoes	252	42,9	10,8	134
Sugar beet	381,1	67,9	25,9	26
Onions	10,0	40,0	0,5	151
Hops	18,0	1,9	0,03	4.500

5.3 Effect of 75 substances on yield and variable costs

Exhibit 26 provides an overview of the consequences to the staple and specialty crops in Germany due to possibly losing the 75 substances.

⁶³ Eurostat; Farm statistics, average 2009-2013

⁶² Eurostat; Economic accounts for agriculture - values at current prices

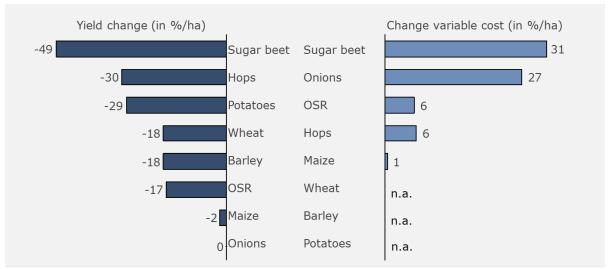


Exhibit 26: Short-term yield and variable costs changes (in %/ha)

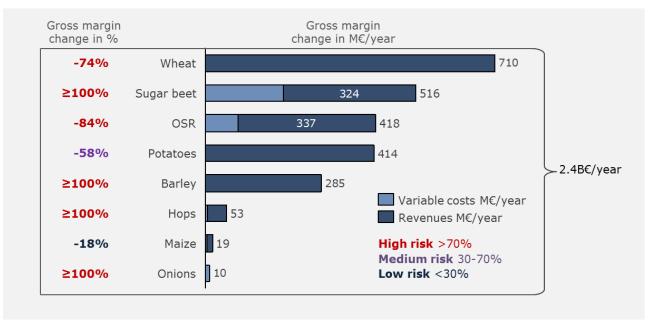
For the staple crops, the 75 substances add relatively the most value to the sugar beet production, allowing farmers to harvest some 49% more tons per hectare than without the substances. The other staple crops benefit from the substances with 15-30% higher yield⁶⁴. With the 75 substances weed, disease and pest pressure on the crops is lower, allowing the crops to grow larger. The value the 75 substances add is especially high in case that there are no chemical alternatives. For example, the criteria for "endocrine harmful substances" in the framework of approval could lead to loss of three of four cereal fungicides⁶⁵.

For the longer term, the 75 substances have an additional value as they support the avoidance of resistance effects. Consequently, the additional long-term yield effect sums to some 25% for sugar beet and to 20% for hops.

The other implication is related to changes of variable production costs. The 75 substances reduce the variable production costs by amongst others improved effectiveness. This is mainly relevant for the cultivation of sugar beet (costs difference of 31%). For onions, banning the 75 substances results in higher variable costs of +27% to keep the yield per hectare at its current level. It is due to fewer pesticides being applied less frequently in case of the 75 substances being available. Put differently, the treatment frequency will increase in case the farming tool box is less well equipped.

5.4 Effects on incomes

The lower yields (see Exhibit 26), given the fixed arable area, imply that the overall crop production in Germany will decrease without the 75 substances. As Exhibit 27 shows, in total, German farm output is currently 23Mt higher. In addition, 10.000t more tons of hops out of the current 34.000t can be produced with the substances.


Exhibit 27: Output changes (in Mt/year)

⁶⁴ for maize, as a consequence of data availability, only the added value of neonicotinoids has been taken into account (2% yield benefit)

⁶⁵ Industrieverband Agrar (IVA), 'Pflanzen ohne Schutz- Droht der Wirkstoffkahlschlag aus Brüssel?', 2015

Compared to other crops, the 75 substances have relatively the largest influence on the amount of sugar beets produced in German (13 Mt/year). This is mainly driven by the relatively large value the 75 substances add to sugar beet cultivation (49% extra yield). Put differently, farmers harvest almost twice as much with the 75 substances than they do when applying alternative substances.

Depending on ex-farm prices and the changes in variable costs, the gross margins earned on cultivating these crops is affected as well.

Exhibit 28: Gross margin effects (in €M/year)

As shown, in total German farmers gain $\in 2.4$ billion gross margins per year from having the 75 substances. The total change between the two scenarios is mainly driven by revenue losses ($\in 2.1$ billion) and to a lesser extent influenced by variable costs ($\in 0.3$ billion). Gross margin gains in wheat and sugar beet make up the majority of the overall effect. In value, wheat would be most affected from a decrease of the farming tool box with $\in 0.7$ billion in value loss. This is as wheat is on average cultivated on by far the largest area. For sugar beet the yield change is larger, however sugar beet is a somewhat smaller crop in Germany.

To shed some light on the situation for specialty crops: as the gross margins earned on cultivating onions decreases, the economic viability of their cultivation is affected significantly. The two most effective products to prevent fungal diseases like downy mildew could not be used anymore. This bears the risk of the emergence of resistance effects and depending on weather conditions might lead to total failure of the harvest. Production costs are affected too: for pre-emergence weed treatment in onions there is currently only one herbicide available. As it is based on pendimethalin it might not be possible anymore to apply this product. An alternative mechanical treatment in an extensive crop like onion is a significant cost factor. Consequently, there is the chance their cultivation will no longer take place in Germany.

For effects on jobs, land use and the carbon footprint please refer to the overall EU chapter.

6 UK

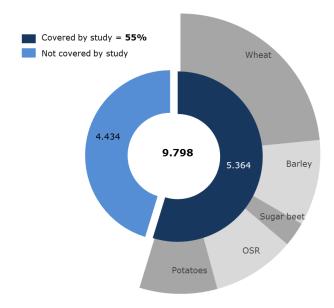
6.1 British key effects

With the current farming tool box available, the British production of **5 key staple crops** is **4Mt higher** and generates **€1.1 billion more value** per year if the 40 substances at high risk are not included. For the UK only the 40 substances at high risk have been evaluated.

In addition, the **economic viability** of the production of **specialty crops**⁶⁷ like peas would be challenged.

Further results include:

- Wheat, barley, sugar beet, potato and oilseed rape would face 10-20% lower yields;
- At the same time, variable production costs for the staple crops would increase by about 15% per hectare;
- Specialty crop peas would be affected to a similar extend;
- In value, wheat would be most affected with €0.4b of value loss;
- British crop agriculture employs 500,000 direct jobs of which 283,000 jobs relate to the crops covered by the study.


6.2 Agriculture in the UK

Indicating the relative importance of the agricultural sector in the United Kingdom, agriculture makes up 0.6% of the UK's GDP and 1% of the total employment is with the sector. At June 2014 the Utilised Agricultural Area (UAA) was 17.2 million hectares, making up 71% of the total UK land area. UAA is made up of arable and horticultural crops, uncropped arable land, common rough grazing, temporary and permanent grassland and land used for outdoor pigs. 51% of arable area is planted as cereal crops. Wheat and barley are the predominant cereal crops standing at 1.9 and 1.0 million hectares respectively. Since 1973 total factor productivity has risen by 52% due to a 34% increase in the volume of all outputs and a 12% decrease in the volume of all inputs.⁶⁸

⁶⁶ Wheat, barley, OSR, potatoes and sugar beet

⁶⁷ For the UK peas are included as specialty crop

⁶⁸ Department for Environment, food and rural affairs, Agriculture in the United Kingdom 2014

Exhibit 29: UK agricultural production value (in € million)

The total average annual UK agricultural production value 69 of the last five years was some $\in 9.8$ billion. The study focusses on the staple crops wheat, barley, oilseed rape, potatoes and sugar beet. In addition, the specialty crop peas are included for the UK. The selection is based on data availability and relevance of the crops. As Exhibit 29 shows, the crops covered by the study represent some 55% (5.364/9.798) of the total UK agricultural production value.

Table 6: Overview UK crops⁷⁰

Crop	Area (1000 ha)	Yield (t/ha)	Output (million ton)	Price (€/ton)
Wheat	1.858	7,5	13,9	165
Barley	1.050	5,7	6,0	162
Oilseed rape	648	3,6	2,4	398
Potatoes	143	40,1	5,7	154
Sugar beet	116	67,4	7,8	36
Peas	32	3,6	0,1	5

6.3 Effect of 75 substances on yield and variable costs

Exhibit 30 provides an overview of the added value of the 40 substances at high risk to be lost to the cultivation of staple and specialty crops in the UK. While for the other countries in scope this analysis estimates the current value of substances at high as well as at medium risk to be lost, for the UK only substances with high risk are taken into account. This is as data from the Andersons Centre, who focused on this group of substances, is the basis for the UK's estimations. On the other hand, some UK specific substances⁷¹ have been included as well.

⁶⁹ Eurostat; Economic accounts for agriculture - values at current prices

⁷⁰ Eurostat; Farm statistics; average 2009-2013

⁷¹ chlorpyrifos, cypermethrin, permethrin, chlorothalonil, 2,4-D, bentazone, bifenox, MCPA, mecoprop, metazachlor, propyzamide and metaldehyde

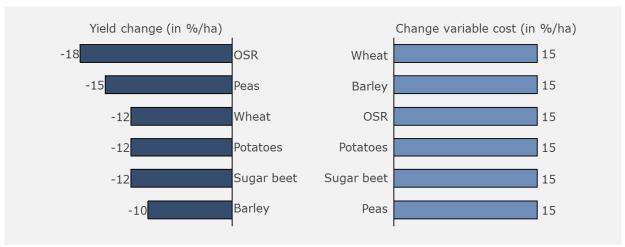


Exhibit 30: Short-term yield and variable costs changes (in %/ha)

For the staple crops, the 40 substances add relatively the most value to the oilseed rape production, allowing farmers to harvest some 18% more tons per hectare than without the substances. The other staple crops benefit from the substances with 10-15% higher yield. These yield changes represent the average yield loss for the entire area of the crop taking into account multiple pest pressure. With the 40 substances weed, disease and pest pressure on the crops is lower, allowing the crops to grow larger.

The other implication is related to changes of variable production costs. The 40 substances reduce the variable production costs by amongst others improved effectiveness. This is equally relevant for the cultivation of all staple crops and peas, where costs rise by some 15%⁷². The costs difference is mainly driven by changes in pesticides and application costs. This is due to fewer pesticides being applied less frequently in case of the 40 substances being available. Put differently, the treatment frequency will increase in case the farming tool box is less well equipped.

6.4 Effects on incomes

The lower yields (see Exhibit 30), given fixed arable area, imply that the overall crop production in the UK will decrease without the 40 substances. As Exhibit 31 shows, in total, British farm output is currently 4Mt higher.

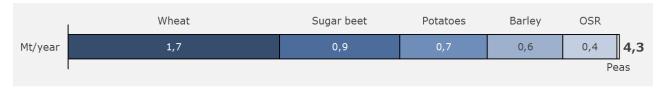
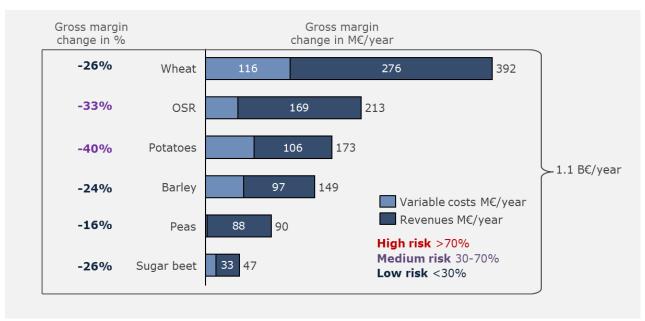



Exhibit 31: Output changes (in Mt/year)

Compared to other crops, the 40 substances have relatively the largest influence on the amount of wheat produced in in UK 2 Mt/year). This is mainly driven by the relatively large area on which wheat is cultivated in the UK in combination with yield effect.

Depending on ex-farm prices and the changes in variable costs, the gross margins earned on cultivating these crops is affected as well.

 $^{^{72}}$ Anderson; 'The effect of the loss of plant protection products on UK agriculture and horticulture and the wider economy'

Exhibit 32: Gross margin effects (in €M/year)

As shown, in total UK farmers gain $\in 1.1$ billion gross margins per year from having the 40 substances. The total change between the two scenarios is mainly driven by revenue losses ($\in 770$ million) and to a lesser extent influenced by variable costs ($\in 295$ million). In value, wheat would be most affected from a decrease of the farming tool box with $\in 392$ million of income loss to the farmer. This is because wheat is on average cultivated on by far the largest area.

For effects on jobs, land use and the carbon footprint please refer to the overall EU chapter.

7 Poland

7.1 Polish key effects

With the current farming tool box available, the Polish production of **5 key staple crops**⁷³ is **6m MT higher** and generates **€0.5 billion more value** per year if the 75 substances at risk are not included.

In addition, **0.5 MT** of output and **€0.1 billion** is supported through the production of the **specialty crops** apples and black currants, and its **economic viability** would be challenged without the 75 substances.

Further results include:

- Wheat, maize and potato would face 5-20% lower yields, while the yield of sugar beet decreases by 30%;
- At the same time, variable production costs for the staple crops would increase from 3% for maize by up to 26% for Oilseed rape per hectare;
- Yield loss for specialty crop apples and black currants would decrease by 20%;
- In value, OSR would be most affected with €307m of value loss, while sugar beet and potatoes would show the largest decrease in profitability (>100%) of the staple crops;
- Polish crop agriculture employs 958,000 direct jobs of which 422,000 jobs relate to the crops covered by the study.

7.2 Agriculture in Poland

Indicating the relative importance of the agricultural sector in Poland, agriculture makes up 4% of Poland's GDP and 12% of total employment is within this sector. Agriculture and forestry constitute more than half of the total area of Poland; with agriculture using 14 million hectares and forestry 9 million hectares of a total 31 million hectares. More than half of the 1.5 million farms in Poland are smaller than 5 hectares, thus productivity of the agricultural sector remains relatively low. Of the total annual agricultural output 47% is from crops.

Cereals represent almost 40% of crop value. Fruits and vegetables another 30% and are of growing importance. For example, Apple production have grown with more than 50% in the last decade, and made Poland the largest producer in the EU.⁷⁴

⁷³ Wheat, potato, maize, rapeseed and sugar beet

⁷⁴ EUROSTAT agricultural production data, 2009-2013

Exhibit 33: Polish agricultural production value (in € million)

The total average annual Polish agricultural production value 75 of the last five years was some $\in 10$ billion. The study focusses on the staple crops wheat, maize, potatoes, OSR and sugar beet. In addition, the specialty crops apples and black currants are included for Poland. The selection is based on data availability and relevance of the crops. As shown above, the crops covered by the study represent some 45% (4,495/10,008) of the total Polish agricultural production value.

Table 7: Overview Polish crops⁷⁶

Crop	Area (1000 ha)	Yield (t/ha)	Output ('000 ton)	Price (€/ton)
Wheat	2,245	4.2	9,342	156
Maize	420	6.7	2,826	145
OSR	779	2.7 2,134		355
Sugar beet	203	55.2	11,216	32
Potatoes	396	21.6 8,566		101
Apples	176	14.7 2,589		215
Black Currants	34	4.3	147	615

7.3 Effect of 75 substances on yield and variable costs

Exhibit 34 provides an overview of the consequences of possibly losing the 75 substances for the staple and specialty crops in Poland.

⁷⁶ Eurostat, Farm statistics, average 2009-2013

 $^{^{75}}$ Eurostat; Economic accounts for agriculture - values at current prices

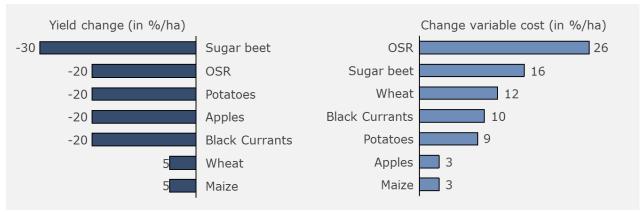


Exhibit 34: Short-term yield and variable costs changes (in %/ha)

For the staple crops, the 75 substances add relatively the most value to the sugar beet production, allowing farmers to harvest some 30% more tons per hectare than without the substances⁷⁷. The other staple crops benefit from the substances with 5-20% higher yield. With the 75 substances weed, disease and pest pressure on the crops is lower, allowing the crops to grow larger. The yield effects for Polish staple crops seem lower (see Table 3), but the crop experts provide wider ranges. The ranges itself are well in line with the other countries.

The Polish experts also indicated yield estimates including higher pest pressure and potential resistance effects. Yield effects could sum up to -30% for cereals, -50% for sugar beet and apples and affect almost all produce for sugar beet and potatoes (see Appendix for the ranges). The experts expect an increased resistance of pathogens due to reduced rotation of active substances. This implies a higher risk from mycotoxins.

The other change is regarding variable costs. The 75 substances reduce the variable production costs by amongst others improved effectiveness. For the staple crops the effect varies from 3% for maize up to 26% for oilseed rape in additional variable costs. This is due to fewer pesticides being applied less frequently in case of the 75 substances being available. Put differently the treatment frequency will increase in case the farming tool box is less well equipped.

7.4 Effects on incomes

The lower yields (see Exhibit 34), given a fixed arable area, imply that the overall crop production in Poland will decrease without the 75 substances. As Exhibit 35 shows, in total Polish farm output is currently 6 Mt higher for staple crops and 0.5Mt for the specialty crops apples and black currants.

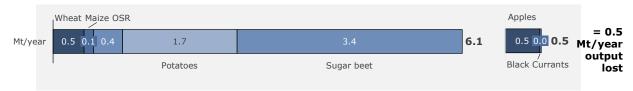


Exhibit 35: Output changes (in Mt/year)

Compared to other crops, the 75 substances have relatively the largest influence on the amount of sugar beets produced in Poland (change of 3.4 Mt/year). This is driven by the

⁷⁷ Best alternatives available will be included in the final report in Appendix I.D

relatively large value the 75 substances add to sugar beet cultivation (30% extra yield) as well as the relatively large area where sugar beet is cultivated in Poland (203,000 ha).

Depending on ex-farm prices and the changes in costs, the net margins earned on cultivating these crops is affected as well.

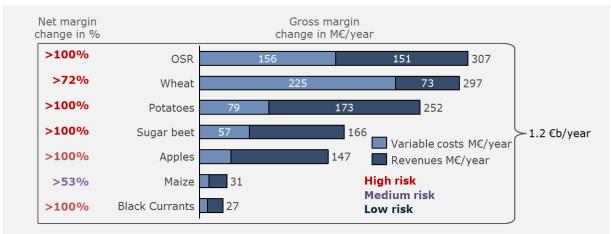


Exhibit 36: Net margin effects (in €m/year)⁷⁸

As shown, in total Polish farmers gain €1.2 billion income per year from having the 75 substances. The largest share of the total change is driven by revenue losses (€638 million), but also the increase in cost contributes substantially (€527 million). In value, OSR and wheat would be most affected by a decrease of the farming tool box with €307 and €297 million of value loss, while potatoes and sugar beet would show the largest decrease in profitability (>100%) of the staple crops. Producer prices for sugar beet per ton are relatively low compared to prices of other crops, therefore the total revenue effect for sugar beet is not among the largest.

As the net margins earned on cultivating staple crops OSR, potatoes and sugar beet decrease significantly, there is the chance that cultivation of these crops will no longer take place in Poland. This is because these crops are at a high risk of losing their economic viability.

The Polish experts also expect an increase in number of treatments, as the alternative products are less effective. Consequently, they expect that this will translate in a higher burden on the environment.

For effects on jobs, land use and the carbon footprint we refer to the overall EU chapter.

⁷⁸ The Kleffmann report describes the effects on net margins instead of gross margins building on Polish crop experts. Therefore, the relative margin change in Poland is higher than the other countries as these represent gross margins.

8 Spain

8.1 Spanish key effects

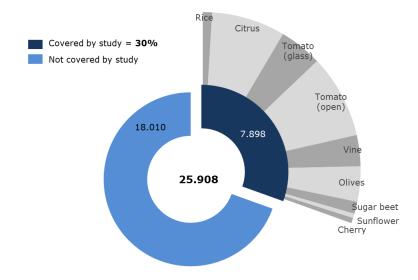
With the current farming tool box available, the Spanish production of the 8 crops analysed⁷⁹ is **11 Mt** higher and generates **€2.7 billion** more value per year if the 75 substances at risk are not included.

Further results show that:

- The 75 substances allow harvesting 85% more open field tomatoes per hectare
- For sugar beet, olives and glass tomatoes the yield with the substances is ca 35-45% higher than without and ranges for the other crops between 15-30%;
- At the same time, variable production costs for the staple crops would increase by up to 50% per hectare;
- In value, citrus fruits would be most affected with €1.5b of value loss;
- Spanish crop agriculture employs 560,000 direct jobs of which 135,000 jobs relate to the crops covered by the study.

8.2 Agriculture in Spain

Indicating the relative importance of the agricultural sector in Spain, agriculture makes up 2.5% of the Spanish GDP and some 4% of the total employment is in the sector. 25 million hectares of land in Spain are dedicated to agriculture equalling about 15% of the total EU agricultural area. The agricultural sector continues to be of great importance to Spain with around 95% of Spanish agricultural and livestock produce exported, accounting for 5% of all Spanish exports. In total, the EU-28 produced an estimated 17 million tonnes of tomatoes in 2014, of which approximately two thirds came from Italy and Spain 81.


Spain is the second largest producer of sweet cherries in Europe and is the seventh largest producer in the world⁸². Within Spain, there are 4 primary production areas: Extremadura (32%), Aragón-Catalonia (34%), Andalusia (10%) and Valencia (9%).

⁷⁹ Tomatoes (open and glass) olives, citrus fruits, vine, sunflower, cherry and rice

⁸⁰ Mintec, Agricultural importance in Spain

⁸¹ Eurostat, Agricultural production

⁸² Cherry Cultivation in Spain http://www.chilecerezas.cl/contenidos/20101101210734.pdf

Exhibit 37: Spanish agricultural production value (in € million)

The total average annual Spanish crop production value⁸³ of the last five years was some €26 billion. The study focusses on some of the most relevant crops in Spain, citrus fruits, tomatoes (both open air and glass production), vine, olives and smaller crops like rice, sunflower, sugar beet and cherry. The selection is based on data availability and relevance of the crops. As Exhibit 37 shows, the crops covered by the study represent some 30% (7.898/35.900) of the total average annual Spanish agricultural production value. This means that the implications indicated hereafter represent 30% of the Spanish agriculture and can be assumed to be larger for the Spanish agriculture as a whole.

Table 8: Overview Spanish crops⁸⁴

Crop	Area (1000 ha)	Yield (t/ha)	Output (million ton)	Price (€/ton)
Tomato (glass)	18	100,0	1.8	620
Tomato (open)	33	86,0	2.8	78
Sugar beet	42	85,7	3.6	33
Citrus	313	18,9	5.9	330
Cherry	25	6,0	0,1	1.132
Sunflower	803	1,1	0.9	356
Rice	118	7,7	0.9	269
Vine	963	6,3	6.0	136
Olives	2.504	3,1	7.8	121

8.3 Effect of 75 substances on yield and variable costs

Exhibit 38 provides an overview of the consequences related to possibly losing the 75 substances for crops in Spain.

⁸³ Eurostat; Economic accounts for agriculture - values at current prices

⁸⁴ Eurostat; Farm statistics, average 2009-2013 & others (for full sources see Appendix)

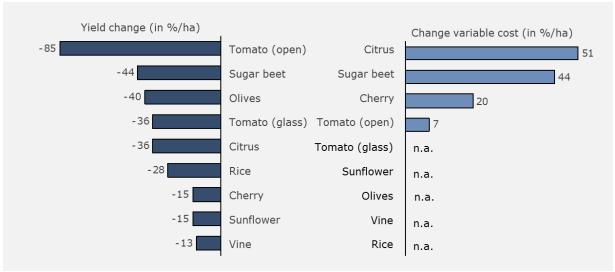


Exhibit 38: Short-term yield and variable costs changes (in %/ha)

The 75 substances add the relative most value to open field tomatoes (85% yield effect). Sugar beet and olives harvest almost twice as much with the 75 substances in their tool box. These effects focus on the immediate implications only, a long-term resistance effect of pests (e.g. for glass tomatoes of an additional 15% yield difference) against the remaining substances would affect the yield even further. With the 75 substances weed, disease and pest pressure on the crops is lower, allowing the crops to grow larger. To give an example, azoles form a key component to control for foliar diseases in the Spanish sugar beet cultivation. A possible removal could cause immediate yield losses of 15-30% as experts indicate that without azoles there might be insufficient control for cercospora blight and rust. Today these diseases are present on some 70% of the area. In the long-run attacks might become more virulent as without treatment farmers are afraid the diseases might spread. An alternative could be to delay the planting data as later in the year the disease cause less damage. However every day sugar beets gain 0.5 t/ha of root weight and with delaying plantation by 30 days being recommended to lower disease pressure significantly hence implies a loss of 15 t/ha or €600/ha farm income. This would reduce the economic viability of sugar beet cultivation in Spain.

For the longer term, the 75 substances have an additional value as they support the avoidance of resistance effects. Consequently, the additional long-term yield effect sums to some 16% for glass tomatoes and to 3% for sunflowers.

The other major implication affects variable production costs. The 75 substances reduce the variable production costs by amongst others improved efficiency. For citrus fruits this can amount to some 50% more variable costs without the 75 substances. This is because in case of the current tool box, fewer pesticides (in kilo) are applied less frequently which saves purchase, labour and energy cost. Put differently, the treatment frequency will increase in case the farming tool box is less well equipped.

8.4 Effects on incomes

The lower yields (see Exhibit 38), given a fixed arable area, imply that the overall crop production in Spain will decrease without the 75 substances. As Exhibit 39 shows, in total, Spanish farm output is currently 11 Mt/year higher than with a reduced tool box. For the crops analysed, this represents an overall reduction of a third (see Table 8).

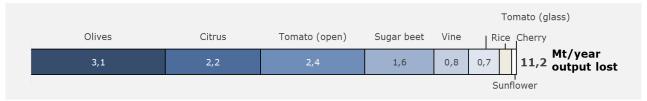


Exhibit 39: Output changes (in Mt/year)

Compared to other crops, the 75 substances have relatively the largest influence on the amount of olives produced in Spain (3 Mt/year), citrus fruits (2 Mt/year) and open field tomatoes (2 Mt/year). This is driven by the relatively large value the 75 substances add to open field tomato cultivation (85% extra yield) as well as the relatively large area where olives and citrus fruits is cultivated in Spain (see Table 8).

Especially the large change in output of open field tomatoes, which are used for industrial purposes, puts pressure on the Spanish tomato processing industry. This is because most of the Spanish tomatoes are also processed in the country and local processors' business results depend amongst others on the throughput volume. In total, there are currently 28 tomatoes processors operating in Spain. Together these companies processed in the 2015 harvest some 3Mt tomatoes generating revenues of €290 million and employing 1.500 seasonal and 400 fixed employees⁸⁵.

Depending on ex-farm prices and the changes in variable costs, the gross margins earned on cultivating these crops is affected as well.

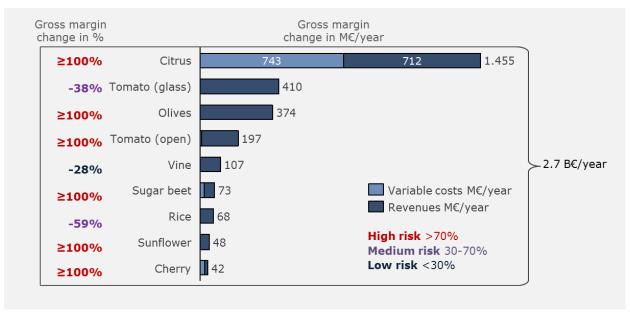


Exhibit 40: Gross margin effects (in €M/year)

As shown, in total Spanish farmers gain some $\[\in \] 2.7$ billion gross margins per year from applying the 75 substances. The total change in the scenario where these substances are no longer applied is mainly driven by revenue losses ($\[\in \] 1.9$ billion) and to a lesser extent influenced by variable costs ($\[\in \] 0.7$ billion). Gross margin gains in citrus fruits make up the majority of the overall effect. In value, citrus fruits would almost equally be affected from a decrease in revenues ($\[\in \] 712$ million) as higher variable production costs ($\[\in \] 743$ million).

52

⁸⁵ Source: Cooperativas agro-alimentarias

steward redqueen

The relatively gross margin change gives insights into the overall economic viability of cultivating the crops. Given the revenue losses and the additional variable costs change, the profitability for citrus fruits, olives, open air tomatoes, sugar beet, sunflower and cherry is at the very least questionable, and might endanger the long-term sustainability of cultivating these crops in Spain. In other words, these crops can be argued to be at a high risk of losing their economic viability.

For effects on jobs, land use and the carbon footprint please refer to the overall EU chapter.

9 Italy

9.1 Italian key effects

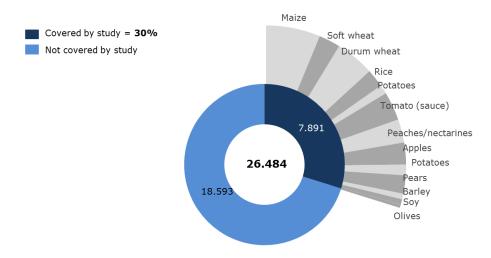
With the current farming tool box available, the Italian production of the 14 crops analysed⁸⁶ is **10 Mt** higher and generates **€2.7 billion** more value per year if the 75 substances at risk are not included.

Further results show that:

- The economic viability of the staple as well as specialty crops would, without the 75 substances, be put under pressure;
- Most grains would face lower yields with 14-25% t/ha, while the yields of olives, hazelnuts, pears and apples are expected to decrease by 60-65%;
- Also costs are likely to increase with 5% for grains and 18-34% for olives and vines.
- The 75 substances contribute to extra farm income of €2.7 billion, of which €1.9 extra revenues and €0.8 lower costs;
- The largest single contribution is to vine with €0.6 billion;
- Italian crop agriculture employs 488,000 direct jobs of which 145,000 jobs relate to the crops covered by the study.

9.2 Agriculture in Italy

Indicating the relative importance of the agricultural sector in Italy, agriculture makes up 2.2% of the Italian GDP and some 4% of the total employment is in the sector. 14 million hectares of land in Italy are dedicated to agriculture equalling about 8% of the total EU agricultural area.⁸⁷ It is characterized by its wide variety of crops and large difference between the north and the south. The northern part produces primarily maize, rice, sugar beets, soybeans, meat, fruits and dairy products, while the South specializes in (durum) wheat and citrus fruits. Overall, grains (31%), olive trees (8.2%), vineyards (5.4%) represent the largest part of the agricultural area. Among others, Italy is the largest producer of vine, rice and soy in Europe.


Many of its typical fruits and vegetables are exported of which 65% to other EU member states.⁸⁸ Furthermore, several food processing activities in Italy are closely linked to crop production such as the production of wine (second largest in the world), olive oil and (hazel) nuts processing in Tuscany. Also many of these processed foods are widely exported.

⁸⁶ Maize, wheat (durum, soft), rice, potatoes, tomatoes (sauce), vine, apples, pears, peaches, nectarines, barley, soy, hazelnut, olives

⁸⁷ Average over 2009-2013 (ISTAT). According to INEA, total farm surface has decreased by 3.3% over the last year

year.

88 ISTAT 2009-2013, EUROSTAT 2009-2013

Exhibit 41: Italian agricultural production value (in € million)

The total average annual Italian crop production value⁸⁹ of the last five years was some €26 billion. The study focusses on some of the most relevant crops in Italy, maize, wheat, rice, potatoes, tomatoes, peaches, nectarines, apples, pears, potatoes, barley and olives. The selection is based on data availability and relevance of the crops. As

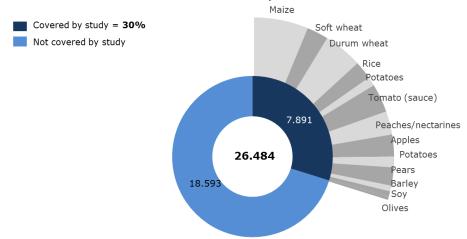


Exhibit 41 shows, the crops covered by the study represent some 30% (7,891/26,484) of the total average annual Italia agricultural production value. This means that the implications indicated hereafter represent 30% of the Italian agriculture and can be assumed to be larger for the Italian agriculture as a whole.

Table 9: Overview Italian crops⁹⁰

Crop	Crop Area (1000 ha)		Output (million ton)	Price (€/ton)	
Maize	952	8.9	8,505	195	
Soft wheat	580	5.3	3,101	212	
Durum wheat	1,262	3.1	3,942	301	
Rice	237	6.6	1,567	352	
Potatoes	43	28.1	1,206	228	
Tomato (sauce)	84	61.3	5,153	169	

⁸⁹ ISTAT – agricultural statistics, Eurostat; Economic accounts for agriculture - values at current prices

90 ISTAT – agricultural statistics 2009-2013, INEA 2009-2013 average prices

Vine	698	9.2	6,400	111
Apples	57	39.8	2,253	296
Pears	38	20.9	790	412
Peaches/nectarines	81	19.0	1,534	362
Barley	267	3.6	963	178
Soy	159	3.3	532	306
Hazelnut	68	1.6	109	21
Olives	1,154	2.8	3,262	31

Italian farmers have about 250 active substances available in their toolbox. Overall, the quantity of pesticides have decreased from 2003-2013 by more efficient and effective uses by farmers. ⁹¹ Over the last years, new parasites have emerged in Italy driven largely by changes in its climate. These demand changes in crop management especially for fruits and vegetables. Currently, farmers seem to have limited options to face these new challenges. ⁹²

9.3 Effect of 75 substances on yield and variable costs

Exhibit 42 provides an overview of the consequences related to possibly losing the 75 substances for crops in Italy.

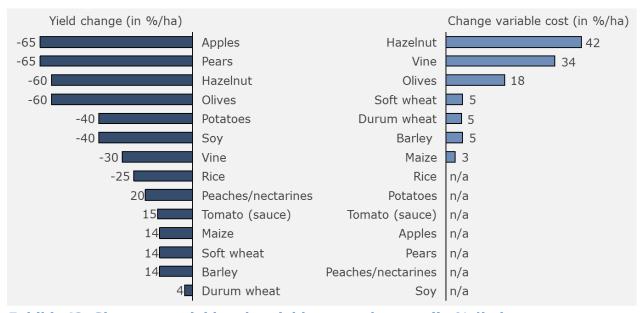


Exhibit 42: Short-term yield and variable costs changes (in %/ha)

The 75 substances add the relative most value to apples, pears, hazelnuts and olives (60-65% yield effect). Most cereals will lose 14-25% of their yields with a smaller toolbox. Vine, one of Italians key crops, benefit with 30% higher yields in the current situation. The production costs are also likely to increase: the extent to which this is the case ranges from 5% for grains and is largest for hazelnuts (+42%).

These yield values represent the effects that at least occur in the short run. As Italian crop experts indicated, yield effects could be larger in years of high pest pressure and also in the long run when including potential resistance effects. Effects for cereals can vary from -14% up to -35%. For tomatoes these can be as large as -35% while for several typical Italian

⁹¹ ISTAT 2003-2013, pesticide use in Italy

⁹² Environchange, L'impatto del cambiamento climatico sulle malattie delle piante, June 2012

fruits and vegetables like vine grapes and olives, these could affect large shares of these crops (see also the yield ranges in the Appendix).

9.4 Effects on incomes

The lower yields (see Exhibit 42), given a fixed arable area, imply that the overall crop production in Italy will decrease without the 75 substances. As Exhibit 43 shows, in total, Italian farm output is currently 10 Mt/year higher than with a reduced tool box. For the crops analysed, this represents an overall reduction of 25% (see Table 9).

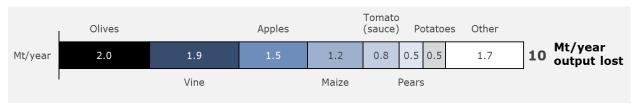


Exhibit 43: Output changes (in Mt/year)

Compared to other crops, the 75 substances have relatively the largest influence on the amount of olives and vines (2.0 and 1.9 Mt/year), but also apples (1.5) and maize (1.2) will decrease significantly in production size. This is driven by the relatively large value the 75 substances add to these crops as well as the relatively size in Italian agriculture (see Table 8).

Depending on ex-farm prices and the changes in variable costs, the gross margins earned on cultivating these crops is affected as well.

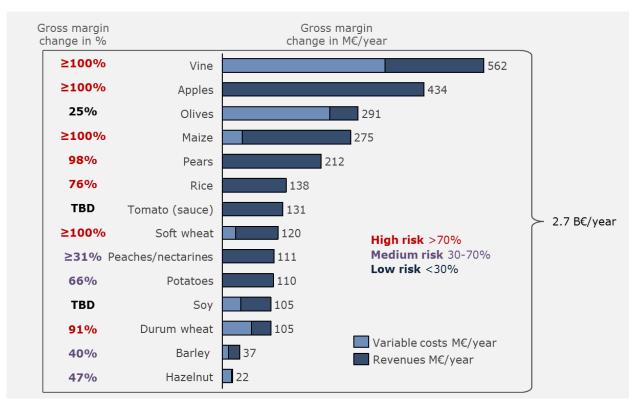


Exhibit 44: Gross margin effects (in €M/year)

As shown, in total Italian farmers gain some $\in 2.7$ billion gross margins per year from applying the 75 substances. The total change in the scenario where these substances are no longer applied relate mostly to revenue losses ($\in 1.9$ billion). However, extra production

steward redqueen

costs would add another \le 0.8 billion. Gross margin gains in vine make up the majority of the overall effect (\le 0.6 billion), but also apples, maize, olives and pears would lose also over \le 200-400m in value.

The relatively gross margin change gives insights into the overall economic viability of cultivating the crops. Given the revenue losses, the profitability for vine, apples, maize and soft wheat is largely affected ($\geq 100\%$ gross margin loss), but also pears, rice and durum wheat profitability losses are substantial. This might endanger the long-term sustainability of cultivating these crops in Italy. In other words, these crops can be argued to be at a high risk of losing their economic viability.

For effects on jobs, land use and the carbon footprint please refer to the overall EU chapter.

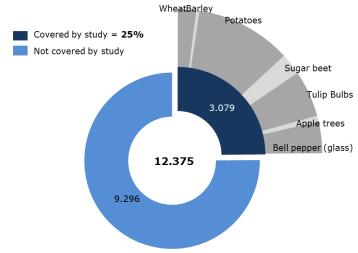
10 The Netherlands

10.1 Dutch key effects

With the current farming tool box available, the Dutch production of **4 key staple crops**⁹³ is **3m Mt higher** and generates **€0.3 billion more value** per year as if the 75 substances at risk are not included.

In addition, **€0.9 billion** value of the **specialty crops**⁹⁴ tulip bulbs, bell-pepper and apple trees and their **economic viability** would be challenged without the 75 substances.

Further results include:


- Wheat, barley and potatoes would face 15-18% lower yields, while the yield of sugar beet decreases by at least 36%;
- At the same time, variable production costs for the staple crops would increase up to 6% up to 36% per hectare;
- Yield loss for the specialty crops tulip bulbs, bell pepper and apple trees would range from 70-100%
- In value, tulip bulbs would be most affected with €515m of value loss, while sugar beet would show the largest decrease in profitability (-45%) of the staple crops;
- Dutch crop agriculture employs 92,000 direct jobs of which 23,000 jobs relate to the crops covered by the study.

10.2 Agriculture in the Netherlands

Indicating the relative importance of the agricultural sector in the Netherlands, agriculture makes up 2% of the Netherland's GDP and 2.6% of the labour force is employed in the sector. The land area of the Netherlands that is used for agriculture is 1.8 million hectares, approximately 55% of total land area. Forestry only constitutes 11% of total land area. 53% of agricultural output is from crops, of which 70% are vegetables and horticultural products. The Netherlands is the world's second largest exporter of agricultural products, and one of the top 3 producers of vegetables and fruit, which given the availability of arable land indicates the high levels of productivity. For several specialty crops, it is the largest producer among other tulip bulbs and apple trees included in the scope. Naturally, supported effects on apple trees relate strongly to apple production in and outside the country produced with Dutch apple trees.

⁹³ Wheat, barley, potato, maize, rapeseed, sugar beet and vine

⁹⁴ Beans, apples and carrots

Exhibit 45: Dutch agricultural production value (in € million)

The total average annual Dutch agricultural production value⁹⁵ of the last five years was some €12 billion. The study focusses on the staple crops wheat, barley, potatoes (ware and seed) and sugar beet. In addition, the specialty crops bell-pepper (glass), tulip bulbs and apple trees are included for the Netherlands. The selection is based on data availability and relevance of the crops. As

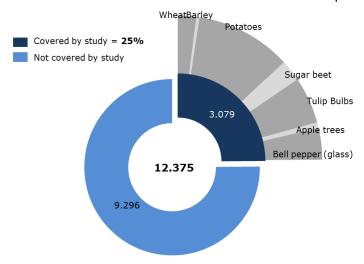


Exhibit 45 shows, the crops covered by the study represent some 25% (3,079/12,375) of the total Dutch agricultural production value. Table 10 summarizes the production data for the crops in scope.

Table 10: Overview Dutch crops⁹⁶

Crop	Area (1000 ha)	Yield (t/ha)	Output ('000 ton)	Price (€/ton)
Wheat	152	8.7	1,323	193
Barley	34	6.7	228	187
Seed potatoes	39	38.0	1,474	266
Ware potatoes	71	50.7	3,601	134

⁹⁵ Eurostat; Economic accounts for agriculture - values at current prices

⁹⁶ Agricultural economic institute (LEI) of Wageningen University, average 2009-2013. For the specialty crops tulip bulbs and apple trees, the number of bulbs and trees is a more common measure of quantity. Bell pepper prices refer to 2014 averages from GFActueel based on three different auctions.

Potatoes	110	46	5,075	181
Sugar beet	73	78.1	5,660	52
Tulip Bulbs	12	n/a	n/a	n/a
Apple trees	0.8	n/a	n/a	n/a
Bell pepper (glass)	1,330	267	361	1,200

10.3 Effect of 75 substances on yield and variable costs

Exhibit 46 provides an overview of the consequences related to possibly losing the 75 substances for the staple and specialty crops in the Netherlands.

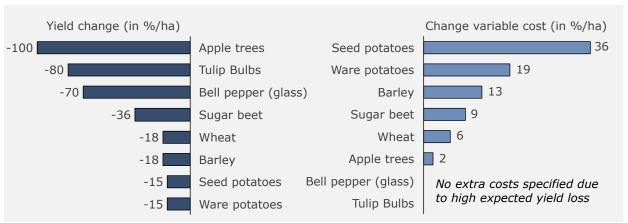


Exhibit 46: Short-term yield and variable costs changes (in %/ha)

For the staple crops, the 75 substances add relatively the most value to the sugar beet production, allowing farmers to harvest some 36% more tons per hectare than without the substances. The other staple crops benefit from the substances with at least 15-18% higher yield. With the 75 substances weed, disease and pest pressure on the crops is lower, allowing the crop to grow larger.

The value represents the effects that will at least occur in the short run. Under unfavourable pest conditions, yield effects could be higher. Furthermore, a smaller crop protection toolbox will increase the chance on resistance development. For potatoes, yield effects could sum up 20-30%, while for yields for cereals and sugar beet could increase to 46-60% (see Appendix).

The other change is with regards to variable costs. The 75 substances reduce the variable production costs by amongst others improved effectiveness. For most staple crops the effect adds less than 13% additional variable costs, however for potatoes these costs can increase from 19% up to 36%. This is due to fewer pesticides being applied less frequently in case of the 75 substances being available.

10.4 Effects on incomes

The lower yields (see Exhibit 46), given a fixed arable area, imply that the overall crop production in the Netherlands will decrease without the use of the 75 substances. As Exhibit 47 shows, in total, Dutch farm output is currently 3.1 Mt higher for staple crops and 0.3 Mt for bell pepper.

Exhibit 47: Output changes (in Mt/year)

Compared to other crops, the 75 substances have relatively the largest influence on the amount of sugar beets produced in the Netherlands (2 Mt/year). This is driven by the relatively large value the 75 substances add to sugar beet cultivation (at least 36% extra yield) as well as the relatively large area upon which sugar beet is cultivated in the Netherlands (73,000 ha).

Depending on ex-farm prices and the changes in variable costs, the gross margins earned on cultivating these crops is affected as well.

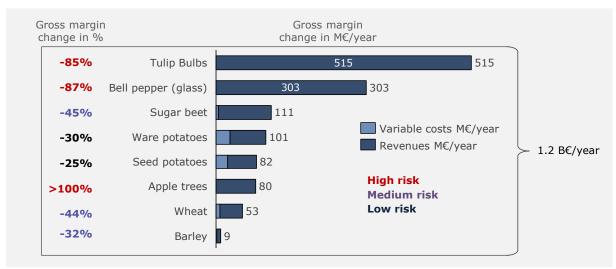


Exhibit 48: Gross margin effects (in €m/year)

As shown, in total Dutch farmers gain ≤ 1.2 billion gross margins per year from having the 75 substances. The total change between the two scenarios is mainly driven by revenue losses (≤ 1.1 billion) and to a lesser extent influenced by variable costs (≤ 0.1 billion). In value, tulip bulbs would be most affected from a decrease of the farming tool box with 515 million of value loss, while sugar beet would show the largest decrease in profitability (-37%) of the staple crops. Overall the profitability of apple trees, tulip bulbs and bell pepper is most affected. As the production of tulip bulbs and bell pepper is assumed to decrease by 70-80%, there are no additional variable costs specified.

As the gross margins earned on cultivating specialty crops like apple trees, tulip bulbs and bell-pepper (glass) decrease significantly, there is the chance that cultivation of these crops will no longer take place in the Netherlands. This is because these crops are at a high risk of losing their economic viability.

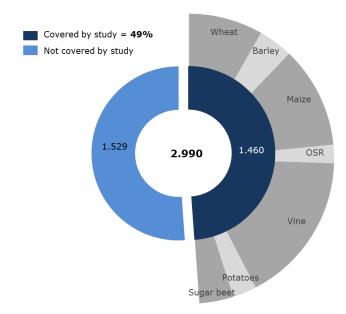
For effects on jobs, land use and the carbon footprint please refer to the overall EU chapter.

11 Austria

11.1 Austrian key effects

With the current farming tool box available, the Austrian production of **7 key staple crops**⁹⁷ is **2 Mt higher** and generates **€420 million more value** per year as if the 75 substances at risk are not included.

Further results include:


- sugar beet would face 35% lower yields, while the yield of wheat, barley, maize, potato and vine decreases by 10-25%;
- At the same time, variable production costs for most of the crops would increase by up to 10% per hectare, for sugar beet variable production costs would double;
- In value, vine would be most affected with €118 million of value loss, while sugar beet would show the largest decrease in profitability of the staple crops;
- Austrian crop agriculture employs 61,000 direct jobs of which 30,000 jobs relate to the crops covered by the study.

11.2 Agriculture in Austria

Indicating the relative importance of the agricultural sector in Austria, agriculture makes up 1.3% of the Austrian GDP and some 5% of the total employment is with the sector. The prevailing annual crops include durum wheat, grain maize, soybean and sunflowers in the warmest parts of Austria. Grasslands are dominant in the highlands and mountainous regions. The agricultural area including alpine pastures makes up about 40% of the Austrian total territory. The main Austrian crop production is located in the eastern and northeastern low-lands of the country. As in these regions the yearly potential evapotranspiration has the same magnitude as the precipitation, Austrian crop production is quite sensitive to shifts in soil water availability. For Austria, the change of crop yield in 2008 referred to 1990 has been estimated based on several combinations of models and scenarios; the outcomes show an increase ranging from 16.7% - 20.5%. 98

⁹⁷ Wheat, barley, potato, maize, oilseed rape, sugar beet and vine

⁹⁸ Climate adoption EU, Agriculture and horticulture in numbers

Exhibit 49: Austrian agricultural production value (in € million)

The total average annual Austrian agricultural production value⁹⁹ of the last five years was some \in 3 billion. The study focusses on the staple crops soft wheat, winter barley, oilseed rape, grain maize, seed and ware potatoes as well as sugar beet and vine. The selection is based on data availability and relevance of the crops. As Exhibit 49 shows, the crops covered by the study represent some 49% (1.460/2.990) of the total Austrian agricultural production value.

Table 11: Overview Austrian crops 100

Crop	Area (1000 ha)	Yield (t/ha)	Output (1000 ton)	Price (€/ton)	
Wheat	285	5,9	1.547	160	
Barley	82	6	721	159	
Maize	211	10	2.095	162	
Sugar beet	47	72	3.192	36	
Seed Potatoes	1,5	20	30	256	
Ware Potatoes	20	31	635	176	
Potatoes	22	30	665	179	
OSR	56 3,3		173	415	
Vine	44	7	305	1.690	

11.3 Effect of 75 substances on yield and variable costs

Exhibit 50 provides an overview of the consequences related to possibly losing the 75 substances for the crops covered in Austria.

⁹⁹ Federal Institute of Agricultural Economics Austria- values at current prices, average 2009-2013

¹⁰⁰ Statistics Austria; Farm statistics, average 2009-2013

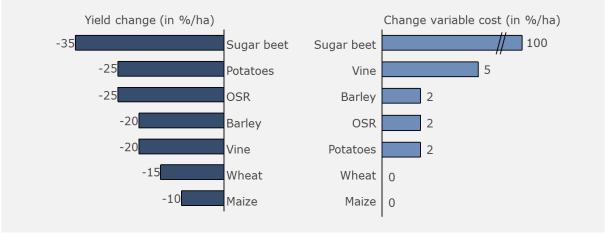


Exhibit 50: Short-term yield and variable costs changes (in %/ha)

The 75 substances add relatively the most value to the sugar beet production, allowing farmers to harvest some 35% more tons per hectare than without the substances. For potatoes and oilseed rape the 75 substances add 25% more yield and the other crops benefit from the substances with 10-20% higher yield. With the 75 substances weed, disease and pest pressure on the crops is lower, allowing the crops to grow larger.

For the longer term (not shown in the exhibit above), the 75 substances have an additional value as they support the avoidance of resistance effects. For cereals the additional long-term yield effect ranges from 2% for wheat to 7% for barley, for maize it is 2%, for oilseed rape 8%, for seed and ware potatoes 10%, for sugar beet 15% and for vine 5%.

In addition, variable production costs are affected. The 75 substances reduce the variable production costs by amongst others improved effectiveness compared to other substances in the tool box. For sugar beet, the ban of the 75 substances would lead to twice as many variable production costs. For the other staple crops the effect is up to 5% additional variable costs. This is caused by fewer amounts of pesticides currently being applied less frequently. Put differently, the treatment frequency is likely to increase in case the farming tool box is less well equipped.

The results for potatoes presented in Exhibit 50 combine the effects of ware and seed potatoes that differ in the change of variable costs. Barley refers to winter barley and maize to grain maize.

11.4 Effects on incomes

The lower yields (see Exhibit 50), given a fixed arable area, imply that the overall crop production in Austria will decrease without the 75 substances. As Exhibit 51 shows, in total, Austrian farm output is currently 2 Mt higher than without the 75 substances.

Exhibit 51: Output changes (in Mt/year)

Compared to other crops, the 75 substances have the relatively largest influence on the amount of sugar beets produced in Austria (1 Mt/year). This is driven by the relatively large

value the 75 substances add to sugar beet cultivation (35% extra yield) as well as the relatively high yield per hectare (72t/ha).

Depending on ex-farm prices and the changes in variable costs, the gross margins earned on cultivating these crops is affected as well.

Exhibit 52 summarizes these effects. As shown, in total Austrian farmers gain €420 million gross margins per year from having the 75 substances. The total change is mainly driven by revenue losses (€330 million) and to a lesser extent influenced by variable costs (€87 million). Gross margin gains in sugar beet and vine make up the majority of the overall effect. In value, sugar beet would be most affected from a decrease of the farming tool box with €118 million of value loss. Given the relatively high ex-farm price per ton of output of vine, the 20% yield change for vine also results in a significant total gross margin loss.

The relative gross margin change gives insights into the overall economic viability of cultivating the crops. Given the revenue losses and the additional variable costs change, the profitability for sugar beet is at least questionable and might endanger the long-term sustainability of cultivating sugar beet in Austria. In other words, sugar beet can be argued to be at a high risk of losing its economic viability.

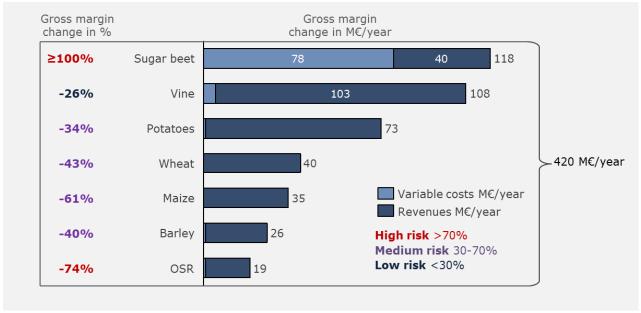


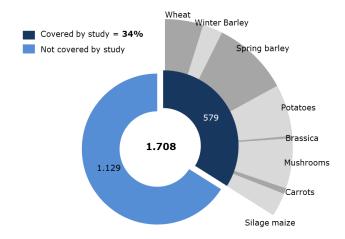
Exhibit 52: Gross margin effects (in €M/year)

For effects on jobs, land use and the carbon footprint please refer to the overall EU chapter.

12 Ireland

12.1 Irish key effects

With the current farming tool box available, the Irish production of **4 key staple crops**¹⁰¹ is **1.4m MT higher** and generates **€0.1 billion more value** per year as if the 75 substances at risk are not included.


In addition, the **economic viability** of the production of **specialty crops**¹⁰², **0.1m MT** of output and **€0.1 billion** is would be challenged without the 75 substances.

Further results include:

- Wheat, barley and potatoes would face 20-30% lower yields, while the yield of silage maize decreases by 50%;
- Yield loss for the specialty crops mushrooms, brassica and carrots would range from 40-55% and variable production costs increase by 38-61%.
- In value, mushrooms would be most affected with €108m of value loss, while carrots would show the largest decrease in profitability (-55%);
- Irish crop agriculture employs 26,000 direct jobs of which 9,000 jobs relate to the crops covered by the study.

12.2 Agriculture in Ireland

Indicating the relative importance of the agricultural sector in Ireland, agriculture makes up 1.6% of the Irish GDP and 5.7% of the labour force is employed within the sector. More than three quarters of the land in Ireland is used for agriculture and forestry; with agriculture at 45 million hectares, constituting 64% of land area. Irish agriculture is primarily a grass-based industry, only 9% of the agricultural area is allocated to crop production. Of the agricultural output 26% is from crops, of which the bulk is vegetables and horticultural products.

Exhibit 53: Irish agricultural production value (in € million)

¹⁰¹ Wheat, barley, potato, silage maize

¹⁰² Mushrooms, brassica, carrots

The total average annual Irish agricultural production value¹⁰³ of the last five years was some $\in 1.7$ billion. The study focusses on the staple crops wheat, barley, potatoes and (silage) maize. In addition, the specialty crops brassica, carrots and mushrooms are included for Ireland. The selection is based on data availability and relevance of the crops. As Exhibit 53 shows, the crops covered by the study represent some 34% (579/1,708) of the total Irish crop production value.

Mushrooms is one of Irish most valuable crops and is acknowledged to be one of the best in the world, and has positive growth prospects in the near future. It employs about 3,200 people directly and 400 people downstream. 75% of its production is exported to the UK, while the British demand is expected to grow steadily.¹⁰⁴

Table 12: Overview Irish crops¹⁰⁵

Crop	Area (1000 ha)	Yield (t/ha)	Output (million ton)	Price (€/ton)	
Wheat	66	8.9	585	141	
Winter barley	32	8.7	279	746 0	
Spring barley	160	6.7	1,078		
Potatoes	11	32.1	351	318	
Brassica	1	25.8	25.8 19		
Mushrooms	n/a	n/a 63		1715	
Carrots	1	56.0 36		353	
(Silage) Maize	12	145.7	1,788	28	

Typically, Irish farmers have less active substances available to manage their crops in comparison to other EU member states such as its neighbour UK (including Northern Ireland). Similar to other small crop markets, the cost of registration outweighs the upside market opportunity, especially in times of low crop prices. Ireland has a favourable climate for cereal production, but is heavily reliant upon intensive application of artificial inputs due to high fungi pressure. ¹⁰⁶

12.3 Effect of 75 substances on yield and variable costs

Exhibit 54 provides an overview of the consequences related to possibly losing the 75 substances for the staple and specialty crops in Ireland.

 $^{^{103}}$ Eurostat; Economic accounts for agriculture - values at current prices

¹⁰⁴ Teagasc, Mushroom Sector Development Plan to 2020, October 2013

¹⁰⁵ Eurostat; Farm statistics, average 2009-2013, CSO/Teagasc farm statistics 2009-2013

¹⁰⁶ Jess et al, European Union (EU) policy on pesticides: Implications for agriculture in Ireland, 2014

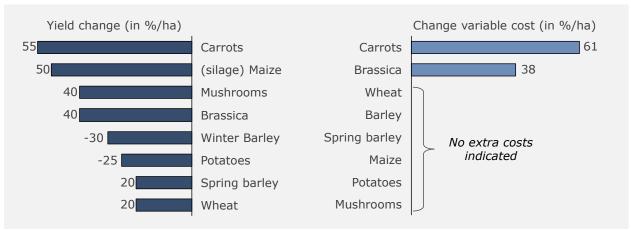


Exhibit 54: Short-term yield and variable costs changes (in %/ha)

For the staple crops, the 75 substances add relatively the most value to (silage) maize production, allowing farmers to harvest some 50% more tons per hectare than without the substances. The other staple crops benefit from the substances with 20-30% higher yield. With the 75 substances weed, farms are better protected against disease and pest pressure, allowing the crops to grow larger.

These yield values indicate the lowest expected yield values, while crop experts from Teagasc provided yield ranges including effects when facing high pest pressure and including resistance effects. Under these circumstances, yield effects of wheat and barley could increase up to 50-70% and similarly for the vegetables carrots and brassica crops (see yield and cost ranges in the Appendix).

The other change is with regards to variable costs. The 75 substances reduce the variable production costs by amongst others improved effectiveness. For the staple crops, we do not have effects on additional variable costs available. For the specialty crops carrots and brassica (e.g. cabbage), the cost changes range from 38-61%.

12.4 Effects on incomes

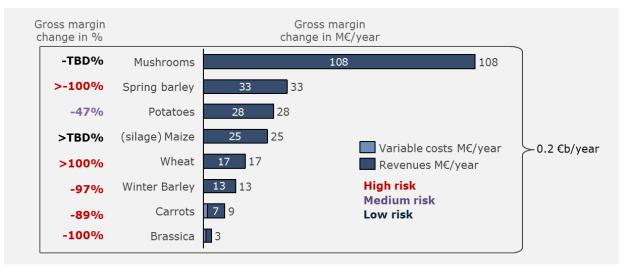

The lower yields (see Exhibit 54), given a fixed arable area, imply that the overall crop production in Ireland will decrease without the 75 substances. As Exhibit 55 shows, in total, Irish farm output is currently 1.4 Mt higher for the staple crops in scope and 0.1 Mt for the mushrooms, brassica and carrots.

Exhibit 55: Output changes (in m MT/year)

Compared to other crops, the 75 substances have relatively the largest influence on the amount of (silage) maize produced in Ireland (0.9 Mt/year). This is driven by the relatively large value the 75 substances add to silage maize cultivation (50% extra yield).

Depending on ex-farm prices and the changes in variable costs, the gross margins earned on cultivating these crops is affected as well.

Exhibit 56: Gross margin effects (in €m/year)

As shown, in total Irish farmers gain $\{0.2\}$ billion gross margins per year from having the 75 substances. The total change is a representation of revenue losses ($\{0.233\}$ million), as the cost change estimates for most crops is not available. For carrots and brassica, changes in production would increase variable costs by $\{0.23\}$ million. In value, mushrooms would be most affected from a decrease of the farming tool box with 108 million of value loss, while all crops show large decreases in profitability from -47% for potatoes and>-90% for all other crops.

As the gross margins earned on cultivating specialty crops like carrots and brassica decrease significantly, there is the chance that cultivation of these crops will no longer take place in Ireland. This is because these crops are at a medium or high risk of losing their economic viability.

For effects on jobs, land use and the carbon footprint please refer to the overall EU chapter.

APPENDIX I – Detailed changes

A. FRANCE

Crop	Pests	Substance name ¹⁰⁷	Substance type	Alternative compared against	Area affected	Immediate yield (change in %)	Add. resistance effect	Change Production costs (€/ha)
	Total					-16%	3%	12
	Septoria	triazoles	Fungicide	SDHI, strobilurins	95%	-5%		
aţ	Aphids and cicadel	imidacloprid		Cypermethrin, cyfluthrin,				
Wheat		lambda-cyhalothrin	Insecticide	alphametrhin, thau fluvalinate, g cyhalothrin	15%	-1%		
>	All weeds	pendimethalin	Herbicide		95%	-10%		
		ioxynil						
		chlorotolurun						
	Total					-19%	3%	11
	Septoria	triazoles	Fungicide	SDHI, strobilurins	95%	-5%		
Barley	Aphids and cicadel	Imidacloprid lambda-cyhalothrin	Insecticide	Cypermethrin, cyfluthrin, alphametrhin, thau	60%	-10%		
Ваг	All weeds	pendimethalin	Herbicide	fluvalinate, g cyhalothrin	95%	-4%		
		ioxynil	nerbicide		95%	-4%		
		chlorotolurun						
	Total					-8%	n.a.	8
	Diseases	triazoles	Fungicide		95%	-/+0%		
aize	Aphids and cicadellae	imidacloprid	-	Chlorpyriphos				
Σ		thiamethoxam	Insecticide	Cypermethrin	95%	-3%		
Grain Maize		clothianidin		Tefluthrin				
G	All weeds	pendimethalin						
		s-metolachlor	Herbicide		95%	-5%		

¹⁰⁷ For beans, OSR, vine and apples also one or several of the following substances have been taken into account: acetamiprid, strobilurins, pyrethrinoïds, penconazole, dimethoat, cyprodinil, fludioxonil, benfluraline, bentazone, ethoflumesate, imazamox, pirimicarb, pyrimicarge and chlorpyrifos

steward redqueen

	Total					-5%	n.a.	38
	Insects	imidacloprid						
OSR		clothianidin						
0			Insecticide	All other technologies	95%	-5%		
		thiacloprid						
		thiamethoxam						
	Total					-35%	n.a.	70
	Diseases	cyproconazole	Fungicide		95%	-25%		
		difenoconazole						
		epoxiconazole						
		propiconazole						
		tetraconazole						
		quinoxyfen						
		hymexazol						
		iprodione						
)ee		mancozeb						
ar t		maneb						
Sugar beet		thiram						
V	Insects	clopyralid	Herbicide		95%	-7%		
		dimethenamid-P						
		ethofumesate						
		fluazifop-p-butyl						
		lenacil						
		s-metolachlor						
		triflusulfuron						
	Weeds	clothianidin	Insecticide		95%	-3%		
		imidacloprid						

		thiamethoxam						
	Total					-10%	n.a.	55
ato	Diseases	multisite fungicides contact fungicides	Fungicide		95%	-10%		
Potato	Wire worms	imidacloprid	Insecticide	Fosthiazate Chlorpyriphos-ethyl	95%	+/-0%		
	Weeds	metribuzin	Herbicide		95%	+/-0%		
	Total					-22%	n.a.	350
	Guignardia bidwellii	triazoles	Fungicide	dithianon	0,05	-10%		
	Downy mildew	folpet		metiram	0,95	-5%		
9		mancozeb						
Vine	Scaphoïdeus titanus	neonicotinoïds	Insecticide	pyrethrinoids	60%	-10%		
	Weeds	amitrole	Herbicide	mechanical solution	0,9	+/-0		
		flumioxazine		glyphosate				
				flazasulfuron, isoxaben, oryzalin, penoxulam				
	Total					-60%	n.a.	n.a.
	Mildew	bupirimate	Fungicide		95%	no figures available		
		myclobutanil						
		tetraconazole						
	Scap	captan	Fungicide	dithianon	95%	up to -100%		
y,		difenoconazole						
Apples		fenbuconazole						
		TCTTDGCOTTGZOTC						
⋖		fluquinconazole						
∢								
∢		fluquinconazole						
∢		fluquinconazole mancozeb						
∢ .	Fruit storage disease	fluquinconazole mancozeb maneb	Fungicide		95%	no longer used		
∢"	Fruit storage disease Apple scrap	fluquinconazole mancozeb maneb tebuconazole	Fungicide Fungicide		95% 59%	no longer used no figures available		

Fly speck						
Sooty blotch						
Leaf miners	abamectin	Fungicide		95%	no figures available	
Moth	beta-cyfluthrin	Insecticide	fenoxycarb	95%	-50% to -100%	
Aphid	deltamethrin	Insecticide	spinosad	59%	-20% to -100%	
	esfenvalerate					
	lambda-cyhalothrin					
	spinosad					
	thiacloprid					
Aphid	deltamethrin	Insecticide		95%	-20% to -80%	
	lambda-cyhalothrin					
	spirotetramat					
	thiacloprid					
Woolly pucernon	thiamethoxam	Insecticide		95%	-20% to -50%	
	clothianidin					
all weeds	amitrole	Herbicide		95%	up to 100%	
	carbetamide					
	clopyralid					
	fluazifop-p-butyl					
	flumioxazine					
	fluroxypyr					
	glufosinate					
	glyphosate					
	pendimethalin					
Disinfection	metam sodium	Other	basamid	95%	no figures available	

	Total				-92%	n.a.	n.a.
ots	Pythiacées	mancozeb	Fungicide	40%	-20%		
Carr	CH. Autre que pythiacée	difenoconazole	Fungicide	95%	-20%		
	Oïdium	myclobutanil	Fungicide	20%	-20%		

	Désherbage	metribuzin	Herbicide		20%	-20%		
		pendimethalin	Herbicide		95%	-20%		
		linuron	Herbicide	no alternative	95%	-30%		
	Ch. Sol	metam sodium	Other		30%	-20%		
	Total					-100%	n.a.	646
	White mold	iprodione	Fungicide	boscalid	75%	-100%		
	(Sclerotinia sclerotiorum)	thiophanate-meythl						
v	Black nightshade, thorn apple, annual mercury	s-metolachlor	Herbicide	clomazon	100%	-100%		
Beans	Insects	lambda-cyhalothrin	Insecticide		95%	-30%		
₩.		deltamethrin						
	Aphids	deltamethrin	Insecticide	no alternative	67%			
		lambda-cyhalothrin						
	Seed maggots & wireworms	chlorpyrifos	Insecticide	no alternative	30%			
	Caterpillars	not affected	Insecticide		95%	0%		

В.

B. GERMANY

Septoria, rust azoles Fungicides Strobilurins, Carboxamides -17% Broadleaved weeds ioxynil Herbicides 2% 0%	n.a.
Broadleaved weeds ioxynil Herbicides 1	
Windhalm, Rispe, Kamille, Vogelniere, Hundskerbel und Kornblume Disteln, Kornblume und Kamille Clopyralid Herbicides Herbicides Tribenuron Klette, Vogelmiere und Winden Fluroxypyr Herbicides Florasulam, Amidosulfuron Couch grass after harvest Black grass Voraussetzung für die konservierende Bodenbearbeitung Poppy seed, silky went grass Jimuron Herbicides Judé M-Fluid Tribenuron 15% -1% Florasulam, Amidosulfuron 15% -1% -10% -10% Tomaliernatives Jomaliernatives Jomalie	
Vogelniere, Hundskerbel und Kornblume Disteln, Kornblume und Kamille Clopyralid Herbicides U 46 M-Fluid Tribenuron 15% -1%	
Couch grass after harvest glyphosate Herbicides no alternatives 1% -10% Black grass glyphosate Herbicides no alternatives 5% -10% Voraussetzung für die konservierende Bodenbearbeitung glyphosate Herbicides no alternatives 30% Poppy seed, silky went grass pendimethalin Herbicides no alternatives 5% -5%	
Couch grass after harvest glyphosate Herbicides no alternatives 1% -10% Black grass glyphosate Herbicides no alternatives 5% -10% Voraussetzung für die konservierende Bodenbearbeitung glyphosate Herbicides no alternatives 30% Poppy seed, silky went grass pendimethalin Herbicides no alternatives 5% -5%	
Black grass glyphosate Herbicides no alternatives 5% -10% Voraussetzung für die konservierende Bodenbearbeitung glyphosate Herbicides no alternatives 30% Poppy seed, silky went grass pendimethalin Herbicides no alternatives 5% -5%	
Voraussetzung für die konservierende Bodenbearbeitung glyphosate Herbicides no alternatives 30% Poppy seed, silky went grass pendimethalin Herbicides no alternatives 5% -5%	
konservierende Bodenbearbeitung glypnosate Herbicides no alternatives 30% Poppy seed, silky went grass pendimethalin Herbicides no alternatives 5% -5%	
Total -2% n.a	
	9
imidacloprid Insecticides All other technologies -1%	
clothianidin	
thiacloprid	
thiacloprid thiamethoxam	
Hirsen und Bingelkraut dimethenamid-P Herbicides Metolachlor und Pethoxamid 10% 0%	
Couch grass after harvest glyphosate Herbicides no alternatives 1% -10%	
Blackgrass glyphosate Herbicides no alternatives 5% -10%	

¹⁰⁸ For wheat/barley, maize, OSR and onions also one or several of the following substances have been taken into account: 2,4-D, acetamiprid, propyzamide, prosulfocarb, aclonifen

Prerequisite for the conservation tillage	glyphosate	Herbicides	no alternatives	30%	
Hirsen und Storchenschnabel-Arten	s-metolachlor	Herbicides	Dimethenamid, Petoxamid, Flufenacet	30%	0%
 Weeds	terbuthylazine	Herbicides	no alternatives	50%	0%

	Total					-17%	n.a.	55
		imidacloprid	Insecticides	All other technologies	60%	-5%		
	Cabbage flea beetle	clothianidin						
	& Cabbage root fly	thiacloprid						
		thiamethoxam						
	Septotia, rust	azoles	Fungicides	Strobilurins, Carboxamides		-7%		
OSR	Grass- and broadleved weeds	S-metolachlor	Herbicides		80%	-5%		
0	Disteln, Kornblume, Kamille	clopyralid	Herbicides	no alternatives	2%	-1%		
	Couch grass	glyphosate	Herbicides	no alternatives	1%	-10%		
	Blight leaf	glyphosate	Herbicides	no alternatives	5%	-10%		
	Prerequisite for the conservation tillage	glyphosate	Herbicides	no alternatives	30%			
	Speedwell species, poppy and panicle	pendimethalin	Herbicides	no alternatives	25%	0%		
	Chamomile fighting	picloram	Herbicides	Diflufenican und Beflubetamid	5%	-2%		
	Volunteer rape and other weeds	triflusulfuron	Herbicides	no alternatives	20%	-2%		

	Total					-49%	-25%	505
		beta-cyfluthrin	Insecticide	Tefluthrin	60%	0%	n.a.	
		clothianidin	Insecticide	Alpha-cypermetrin, Pirimicarb	100%	-10%		
beet		imidacloprid	Insecticide	Alpha-cypermetrin, Pirimicarb				
	Creeping thistle, Chamomile,	thiamethoxam	Insecticide	Alpha-cypermetrin, Pirimicarb				
Sugar	Nightshade, Buckwheat, Fool's	deltamethrin	Insecticide	Alpha-cypermetrin, Pirimicarb	0 bis 25%	-10%		
Su	Parsley	dimethoate	Insecticide	Alpha-cypermetrin, Pirimicarb	0 bis 15%			
		lambda-cyhalothrin	Insecticide	Alpha-cypermetrin, Pirimicarb	0 bis 25%			
		cyproconazole	Fungicide	Quinoxyfen, Strobilurine	bis 100 %	-15%	n.a.	
		difenoconazole	Fungicide	Sulfur				

		thiophanate-meythl	Fungicide		10%	-10%		
		prochloraz	Fungicide		60%	-10%		
		thiram	Fungicide	No alternative	100%	-15%		
		hymexazol	Fungicide	No alternative	100%			
		clopyralid	Herbicide	No alternatives	10%	-10%	5-10%	115
	Amaranth, Speedwell, Chamomile, Geranium, Fool's Parsley Nightshade	dimethenamid-P	Herbicide	No alternatives	15%	-5%		
	Amaranth, Cleavers, Goosefoot, Knotweed	ethofumesate	Herbicide	Quinmerac	100%	-10%		
	Graminizid	fluazifop-p-butyl	Herbicide	Other Fop products like Targa Super, Agil-S, Galant Super	5%	-5%		35
	Amaranth, Cleavers, Smartweed, Oil radish, Volunteer rape, Camomile, Fool's Parsley,	triflusulfuron	Herbicide	No alternatives	50%	-10%		95
		lenacil	Herbicide		80%	0%		60
	Old weeds in spring. Important in the no-till sowing of sugar beet in mulch sowing.	glyphosate	Herbicide	No alternatives	40%	0%	5-10%	
	Total					-29%	n.a.	n.a.
		glyphosate		Compared to		260/		
0	Leaf blight	glyphosate	Fungicides	untreated situation		-26%		
tato	Leaf blight Couch grass	glyphosate glyphosate	Herbicides	untreated situation No alternatives	1%	-10%		
Potato	_				1% 5%			
Potato	Couch grass	glyphosate	Herbicides	No alternatives		-10%		
Potato	Couch grass Blackgrass before sowing Prerequisite for the conservation	glyphosate	Herbicides Herbicides	No alternatives	5%	-10%		
Potato	Couch grass Blackgrass before sowing Prerequisite for the conservation tillage	glyphosate glyphosate glyphosate	Herbicides Herbicides Herbicides	No alternatives No alternatives No alternatives	5% 30%	-10% -10%		
Potato	Couch grass Blackgrass before sowing Prerequisite for the conservation tillage	glyphosate glyphosate glyphosate	Herbicides Herbicides Herbicides	No alternatives No alternatives No alternatives	5% 30%	-10% -10%	n.a.	1000
	Couch grass Blackgrass before sowing Prerequisite for the conservation tillage General weeds	glyphosate glyphosate glyphosate	Herbicides Herbicides Herbicides	No alternatives No alternatives No alternatives	5% 30%	-10% -10% -3%	n.a.	1000
	Couch grass Blackgrass before sowing Prerequisite for the conservation tillage General weeds	glyphosate glyphosate glyphosate metribuzin	Herbicides Herbicides Herbicides	No alternatives No alternatives No alternatives No alternatives	5% 30%	-10% -10% -3%	n.a.	1000
Onions Potato	Couch grass Blackgrass before sowing Prerequisite for the conservation tillage General weeds	glyphosate glyphosate glyphosate metribuzin	Herbicides Herbicides Herbicides	No alternatives No alternatives No alternatives No alternatives	5% 30%	-10% -10% -3%	n.a.	1000
	Couch grass Blackgrass before sowing Prerequisite for the conservation tillage General weeds	glyphosate glyphosate glyphosate metribuzin pendimethalin ioxynil	Herbicides Herbicides Herbicides Herbicides	No alternatives No alternatives No alternatives No alternatives No alternatives	5% 30%	-10% -10% -3% 0% up to 100%	n.a.	1000
Onions	Couch grass Blackgrass before sowing Prerequisite for the conservation tillage General weeds Total	glyphosate glyphosate glyphosate metribuzin pendimethalin ioxynil mancozeb	Herbicides Herbicides Herbicides Herbicides Fungicides	No alternatives No alternatives No alternatives No alternatives No alternatives No alternatives available	5% 30%	-10% -10% -3% 0% up to 100%		
	Couch grass Blackgrass before sowing Prerequisite for the conservation tillage General weeds	glyphosate glyphosate glyphosate metribuzin pendimethalin ioxynil mancozeb	Herbicides Herbicides Herbicides Herbicides Fungicides	No alternatives No alternatives No alternatives No alternatives No alternatives No alternatives available	5% 30%	-10% -10% -3% 0% up to 100%	n.a.	1000

Aphids	imidacloprid	Insecticides	flonicamid	10%	-1%	90%	
hop flee beetle	lambda-cyhalothrin	Insecticides	none	30% - 50%	-0,15	0%	
alfalfa snout weevil, hop flea bee	etle thiamethoxam	Insecticides	none	30% - 50%	-0,15	0%	
Downy mildew	mandipropamid	Fungicides	azoxystrobin, dimethomorph, copperhydroxide, dithianon + cymoxynil, pyraclostrobin + boscalid, fosetyl-al	25%	-1%	0%	
Powdery mildew	myclobutanil	Fungicides	pyraclostrobin+boscalid, potassium hydrogene carbonate, sulfur	100%	-20%	10% plus up to 10% quality loss	+ 100 €/ha
	quinoxyfen						
	triademenol						
Monocotylidones	fluazifop-p-butyl	Herbicides	none	60%	-3%	0%	+ 50 €/ha
	tepraloxydim						
Basal defoliation	flumioxazine	Herbicides	early defoliation: none	35%	0%	0%	+100 €/ha

B.

C. UK

Crop	Pests	Substance	Substance type	Alternative	Area affected	Yield	Additonal resistance	Change variable production costs
Стор	name		Substance type	compared against	Area arrected	(change %)	effect	(%/ha)
	Total					-12%	n/a	EUR 62/ha
		Bifenthrin		Metaldehyde and ferric				
	Insects	esfenvalerate	Insecticide	phosphate, lambda-	34%	-2%		
		thiacloprid		cyhalothrin				
		carbendazim						
Wheat	Septoria and other fungal diseases	Azoles	Fungicide	Chlorothalonil, mancozeb, folpet, biaxfen, boscalid, fluxapyroxad and isopyrazam	68-100%	-3%		
	Blackgrass and other	Pendimethalin		Chlorotoluron				
	weeds (including	ioxynil	Herbicide	Chlorotoluron, clopyralid and	52-75%	-20%		
	broadleaved)	linuron		glyphosate				
	Total					-10%	n/a	EUR 50/ha
		carbendazim						
		quinoxyfen						
Barley	Fungal diseases (mildew, fusarium)	Azoles	Fungicide		58%	-1%		

Insects	Bifenthrin esfenvalerate thiacloprid	Insecticide	Cypermethrin, cyfluthrin, alphametrhin, thau fluvalinate, ferric phosphate	21%	-1%		
Blackgrass and other weeds (including broadleaved)	Pendimethalin ioxynil linuron	Herbicide	Chlorotoluron, clopyralid and glyphosate	52-75%	-20%		
Total					-18%	n/a	EUR 67/ha
Phoma leaf spot	Metconazole flusilazole	Fungicide	Foliar sprays, prothioconazole	90%	-3%		
Aphids, turnip yellow virus, cabbage stem flea beetle	Clothianidin imidacloprid thiamethoxam	Insecticide	Ferric phosphate, deltamethrin	67%	17%		
Volunteer cereals, grass weed and other weed	Carbetamide metazachlor propyzamide	Herbicide		4%	24%		
Total					-12%	n/a	EUR 123/ha
Fungal disease	Cyproconazole	Fungicide	Difenoconazole, benfuracarb, fosthiazate and oxamyl	80%	-15%		
Other pests (cutworms, aphids, moths etc)	Cypermethrin methiocarb	Insecticide	Lambda-cyhalothrin	10%	-15%		
Total					-12%	n/a	EUR 467/ha
Blight	Chlorothalonil fluazinam mancozeb maneb	Fungicide	Benfuracarb, fosthiazate and oxamyl	100%	-10%		
	Blackgrass and other weeds (including broadleaved) Total Phoma leaf spot Aphids, turnip yellow virus, cabbage stem flea beetle Volunteer cereals, grass weed and other weed Total Fungal disease Other pests (cutworms, aphids, moths etc) Total	Insects Blackgrass and other weeds (including broadleaved) Phoma leaf spot Phoma leaf spot Aphids, turnip yellow virus, cabbage stem flea beetle Volunteer cereals, grass weed and other weed Total Fungal disease Other pests (cutworms, aphids, moths etc) Total Chlorothalonil fluazinam mancozeb Pendimethalin ioxynil linuron Metconazole flusilazole Clothianidin imidacloprid thiamethoxam cypermethrin Carbetamide metazachlor propyzamide Cypermethrin Cypermethrin methiocarb Chlorothalonil fluazinam mancozeb	Insects esfenvalerate thiacloprid Pendimethalin ioxynil linuron Total Phoma leaf spot Phoma leaf spot Phoma leaf spot Clothianidin imidacloprid virus, cabbage stem flea beetle Volunteer cereals, grass weed and other weed Total Fungal disease Cypermethrin Cypermethrin Carbetamide metazachlor propyzamide Total Fungal disease Cypermethrin Cypermethrin Cypermethrin Carbetamide metazachlor propyzamide Total Cypermethrin Total Cypermethrin Cypermethrin Carbetamide metazachlor propyzamide Total Fungal disease Cyperconazole Fungicide Fungicide Total Chlorothalonil fluazinam mancozeb Fungicide Fungicide	Insects esfenvalerate thiacloprid linuron Blackgrass and other weeds (including broadleaved) Pendimethalin ioxynil linuron Total Phoma leaf spot Metconazole flusilazole Phoma leaf spot Clothianidin imidacloprid virus, cabbage stem flea beetle Volunteer cereals, grass weed and other weed Total Fungal disease Cyproconazole Fungicide Fungicide Fungicide Ferric phosphate, deltamethrin Insecticide Total Total Carbetamide metazachlor propyzamide Total Cyproconazole Fungicide Fungicide Fungicide Fungicide Difenoconazole, benfuracarb, fosthiazate and oxamyl Lambda-cyhalothrin methiocarb Total Chlorothalonil fluazinam methioczeb Fungicide Fungicide Fungicide Benfuracarb, fosthiazate and oxamyl Benfuracarb, fosthiazate and oxamyl	Insects esfervalerate thiacloprid Biackgrass and other weeds (including broadleaved) Phoma leaf spot flusilazole Clothianidin Aphids, turnip yellow virus, cabbage stem flea beetle Carbetamide grass weed and other weed Total Total Total Total Carbetamide grass weed and other weed Cyproconazole Fungicide Fungicide Fungicide Foliar sprays, prothioconazole flusilazole Ferric phosphate, deltamethrin Aphids, turnip yellow virus, cabbage stem flea beetle Carbetamide metazachlor propyzamide Total Total Total Carbetamide metazachlor propyzamide Total Cyproconazole Fungicide Fungicide Fungicide Difenoconazole, benfuracarb, fosthiazate and oxamyl Other pests (cutworms, aphids, moths etc) Chlorothalonil fluazinam mancozeb Fungicide Fungicide Benfuracarb, fosthiazate and oxamyl Benfuracarb, fosthiazate and oxamyl 100%	Insects esfenvalerate thiacloprid blackgrass and other weeds (including broadleaved) Fotal Total Metconazole flusilazole Clothianidin Aphids, turnip yellow virus, cabbage steem ffea beetle Wolunteer cereals, grass weed and other weed from thiamethoxam Cypermethrin Collografication Fungicide Fungi	Insects esferovalerate thiacloprid language of the properties of t

	Slugs and other pests (aphids, nematodes etc)	Cypermethrin Methiocarb	Insecticide	Metaldehyde and ferric phosphate, lambda- cyhalothrin	80%	-2%		
	Volunteer cereals, grass weed and other weed	Pendimethalin linuron	Herbicide		95%	-1%		
	Total					-15%	n/a	EUR 57/ha
Peas	Fungal diseases	Chlorothalonil Metconazole	Fungicide		10%	-20%		

D. POLAND

		Substance		Alternative		Yield	i (% change)	Change variable
Crop	Pests	name	Substance type	compared against ¹⁰⁹	Area affected	Minimum	Maximum (incl resistance)	production costs (%/ha)
	Total					-5%	-30%	EUR 100-250
		Dimethoate						
		Lambda-Cyhalothrin						
		Imidacloprid						
	Aphid	Deltamethrin	Insecticide					
		Beta-Cyfluthrin						
		Esfenvalerate						
		Thiamethoxam						
		tebuconazole						
		Epoxiconazole						
at		Propiconazole						
Wheat		Prothioconazole						
>		Prochloraz						
		Cyproconazole						
	Leaf diseases (rust,	Metconazole						
	septoriosis), fusarium root rot, powdery	Tetraconazole	fungicide					
	mildew	Difenoconazole						
		Fluquinconazole						
		Carbendazim						
		Thiophanate-methyl						
		triadimenol						
		Mancozeb						
		Folpet						

 $^{^{109}}$ Best alternatives in Poland will be included in the final report.

		Thiram				
		Glyphosate				
		Tralkoxydim				
		Metribuzin				
	Monocot and dicot	chlorotolurun				
	weeds	Pendimethalin	Herbicide			
		Fluroxypyr				
		Clopyralid				
		Pinoxaden				
	Total			-5%	-30%	EUR 25-200
		Lambda-Cyhalothrin				
	Wireworms, european corn borer, frit fly, western corn rootworm	Thiacloprid				
		Imidacloprid	Insecticide			
	TOOLWOTTI	Deltamethrin				
	ear fusariosis, minor	Epoxiconazole				
O	leaf blight, corn smut, maize head smut, seedling blight	Triticonazole	fungicide			
Maize		Thiram				
2		terbuthylazine				
		Fluroxypyr				
		Pendimethalin				
	Monocot and dicot weeds	S-Metolachlor	Herbicide			
		Linuron				
		Dimethenamid-P				
		Glyphosate				
	Total			-20%	-70%	EUR 200-300
		Lambda-Cyhalothrin				
S		Thiacloprid				
Potatoes	Calavada natata	Esfenvalerate				
ots	Colorado potato beetle, soil pests	Clothianidin	Insecticide			
4	beetie, soil pests					
•		Thiamethoxam				
		Deltamethrin				

		Imidacloprid				
		mandipropamid	fungicide			
		Fluazinam				
	Potato late blight,	Mancozeb				
	alterneria leaf spot	Captan				
		Metiram				
		Folpet				
		Lambda-Cyhalothrin				
		Thiacloprid				
		Esfenvalerate				
	Monocot and dicot weeds	Clothianidin	Herbicide			
		Thiamethoxam	Herbicide			
		Deltamethrin				
		Beta-Cyfluthrin				
		Imidacloprid				
	Growth control	Chlorpropham	Other			
•	Total			-20%	-70%	EUR 280-300
		Esfenvalerate				
		Dimethoate				
		beta-cyfluthrin				
		Thiamethoxam				
	Soil pests, foliar pests	Clothianidin	Insecticide			
et		Imidacloprid				
r be		Deltamethrin				
Sugar beet		Thiacloprid				
ร		Lambda-Cyhalothrin				
		Epoxiconazole				
		Epoxiconazole Mancozeb				
	Taro leaf blight,		funcicido			
	Taro leaf blight, powdery mildew	Mancozeb	fungicide			
	Taro leaf blight, powdery mildew	Mancozeb Tetraconazole	fungicide			

		Thiram				
		Hymexazol				
	Monocot weeds	Glyphosate lenacil Tepraloxydim Triflusulfuron Clopyralid Ethofumesate	Herbicide			
		Fluazifop-P-Butyl S-Metolachlor				
	Total			-20%	-50%	EUR 200-30
OSR	Soil pests, foliar pests	Esfenvalerate Dimethoate Thiamethoxam Clothianidin Imidacloprid Deltamethrin Thiacloprid Lambda-Cyhalothrin	Insecticide			
	Taro leaf blight, powdery mildew	Epoxiconazole Mancozeb Tetraconazole Tebuconazole Cyproconazole thiophanate-methyl Thiram Hymexazol	fungicide			
	Monocot weeds	lenacil Tepraloxydim Triflusulfuron Clopyralid Ethofumesate	Herbicide			

		Fluazifop-P-Butyl S-Metolachlor				
	Total			-20%	-50%	EUR 200-300
		Lambda-Cyhalothrin				
		Beta-Cyfluthrin				
	Autumn rapeseed	Clothianidin				
	pests, weevil, pollen beetle	Deltamethrin	Insecticide			
	beetie	Esfenvalerate				
		Imidacloprid				
		Thiacloprid				
	Growth control, dry rot, cylindrosporiosis, white mold	Metconazole				
		Difenoconazole				
		Prothioconazole				
Apples		Tetraconazole				
App		Tebuconazole	fungicide			
		Carbendazim				
		thiophanate-methyl				
		Prochloraz				
		Thiram				
		Glyphosate				
		glufosinate				
		Fluazifop-P-Butyl				
	Monocot and dicot weeds		Herbicide			
		Clopyralid				
		Picloram				
10		Dimethenamid-P				
Black currants	Total			-20%	-100%	EUR 250-500
ı i		Lambda-Cyhalothrin				
X	Aphid	Thiacloprid	Insecticide			
3 lac		Thiamethoxam				
ш						

	Deltamethrin	
	Metiram	
Anthracnose, powdery	Mancozeb	fungicide
mildew	thiophanate-methyl	rungicide
	Bupirimate	
	Fluazifop-P-Butyl	
monocot & other weeds	Glyphosate	Herbicide
	glufosinate	

E. SPAIN

Crop	Pests	Substance name ¹¹⁰	Substance type	Alternative compared against	Area affected	Immediate yield (change %)	Add. resistance effect	Change production costs (€/ha)
	Total					-36%	n.a.	2.371
	Aguado, alternaria, antracnosis	mancozeb	Fungicide	Azoxistrobin, Copper, Fosetil-al	20%	-12%		
	Louses,	spirotetramat	Insecticide		50%	-10%		
	Whiteflies			Metil, Clorpirifos, Aceites, Parafinicos, Feromonas, Piriproxifen				10% of variable costs
	Aphids			, , , , , , , , , , , , , , , , , , , ,				
Citrus	Aphids, thrips, minelayer	dimethoate	Insecticide	Flonicamida, Tau-FLuvalinato		-5%		5% of variable
Ö		thiamethoxam		riomeaniaa, raa r zavainate				costs
	Red mite,	abamectina	Insecticide & acaricide	Piridaben, Etoxazol,	60%	-12%		
	red spider mite,			Fenpiroximato				
	leaf miner			Spiridiclofen, Hexitiazon				
	Fruit flies	deltamethrin lambda- cyhalothrin	Insecticide	Etofenprox, Lambda, Chialotrin	30%	-5%		20%of variable costs

For citrus fruits and cherries also one or several of the following substances have been taken into account: abamectina and fludioxonil

		spinosad					
	Minelayers	imidacloprid	Insecticide	Azadirectina	10%	-9%	
	Snails	methiocarb	Helicide	No alternative available	20%	-30%	
	All weeds	glyphosate	Herbicide	2,4-D, Acido, Triclopir, Amitrol, MCPA, Diflufenican, Pendimetalin, Diflufenican, Oxifluorfen	-10%	35%	
						0=0/	
0 -	Total					-85%	250
nato en)		metribuzin	Herbicides	Rimsulfuron	70%	-100%	
Tomato (open)		metam sodium	Other	Oxamilo, Dicloropropeno	50%	-50%	
				Organic substances			

(ss)	Total					-36%	-15%	n.a.
	Desinfection soil fungi	metam sodium	Fungicide	No alternative available	50%	-50%	-25%	
	Aphids,	spiromesifen	Insecticide		15%	-4%	-0.6%	
las	Mealy bugs	spirotetramat						
Tomato (glass)	White spider							
	Trips	spinosad	Insecticide	No alternative available	15%	-30%	-4.5%	
	Mildew	mandipropami d	Fungicide		40%	-15%	-6%	
		mancozeb						
	Botritis	iprodione	Fungicide		30%	unknown	unknown	
	Total					-13%	n.a.	n.a.
	Botritis o Pobredumbre cinerea)	gris (Botrytis	Fungicide		13%			
	Mildiu		Fungicide		57%			
e	(Plasmopora viticola)							
Vine	Oidio		Fungicide		32%			
	(Erysiphe necator)							
	Piral		Insecticide		5%			
	(Cnarganothic							
	(Sparganothis pilleriana)							

Pollilla del racimo	Insecticide	2%
(Lobesia botrana/Eupoecilla		

w	Total	Total						n.a.
/es	Monocots	glyphosate	Herbicide	Quizalafop-etil	100%	-20%		
<u>=</u>	Prays	dimethoate	Insecticide	No alternatives	50%	-40%		
			Fungicide					

	Total					-44%	n.a.	521
	Cercospora blight,	carbendazim	Fungicide		70%	-15% to		
	Powdery mildew,	cyproconazole				-30%		
	Rust	difenoconazole		No alternative				
		epoxiconazole		available				
		hymexazol						
		mancozeb						
		maneb						
		prochloraz						
		propiconazole						
Sugar beet		tetraconazole thiophanate- meythl carbendazim						
Ń	Flea beetles,	beta-cyfluthrin	Insecticide					
	Aphids,	clothianidin						
	Weevils,	deltamethrin						
	Casida,	dimethoate				-10% to		
	Noctuids	esfenvalerate			40%	-30%		
		imidacloprid lambda- cyhalothrin						
	Composed,	thiacloprid clopyralid	Herbicide		100%	-30%		
	Xanthium,	ethofumesate	/ Ci bicide		100 /0	30 /0		

	Aboutillan	fluazifop-p-						
	Abutillon,	butyl						
	Torilis,	glyphosate						
	Mauve,	lenacil						
	Crop sprouts	S-metolachlor						
	like sunflower	triflusulfuron						
	Total					-28%	n.a.	n.a.
	Pyricularia	tebuconazole	Fungicide	Triciclazol	80%	-25%		
		prochloraz		Azoxistrobin				
Rice		propiconazole						
골	Aphids	imidacloprid	Insecticide	Etofenprox	10%	-10%		
	All weeds	МСРВ	Herbicide	Penoxulan	100%	-7%		
				Bednesulfuron				
				Bentazone, Halosulfuron				
/er	Total					-15%	n.a.	n.a.
<u>6</u>		imidacloprid	All other technologies available	Other		-15%		
Sunflower			available	technologies				
S				teciniologies				
	Total					-15%	n.a.	1.040
	Weed	glyphosate	Herbicide			-10%		
	Aphids	dimethoate	Insecticide			-25%		
	Aphids	spinosad	Insecticide			-25%		
гт	Cochinillas, Orugas	chlorpropham	Insecticide			-10%		
Cherry	Cocinimas, Oragas	thiamethoxam	msecticide			10 /0		
	Maelybugs, caterpillars	Imidacloprid	Insecticide			-10%		
	Miner, aphids	mancozeb	Fungicide			-12%		
	Brown rot, anthracnose	tebuconazole	Fungicide			-25%		

F. ITALY

		Substance		Alternative	Area	Yield	(% change)	Change variable
Crop	Pests	name	Substance type	compared against	affected	Minimum	Maximum (incl resistance)	production costs (%/ha)
	Total (Veneto, Friu	ıli, Emilia)				-14%	-25%	EUR 45-480
		Deltamethrin	Insecticide	etofenprox	30%	-5%		
(o)		Dimethenamid-P	herbicide	nicosolfuron	40%	0 to -5%		
ene.		fluroxypyr	herbicide	bentazone	30%	0		
<u>ن</u> >		Glyphosate	herbicide	diquat	80%	-7%		
ח <u>ל</u>		lambda-cyhalothrin	Insecticide	indoxacarb	5%	0 to -15%		
<u>ø</u> =		Linuron	herbicide	prosulfuron	10%	-4%		
<u>e</u>		methiocarb	Insecticide	tefluthrin	40%	0 to -10%		
ха		pendimethalin	herbicide	nicosolfuron	10%	0 to -5%		
9		prothioconazole	fungicide	none	1%	-15%		
Maize (example input: Veneto)		S-metolachlor	herbicide	Thiencarbazone-methyl, Isoxaflutole, Cyprosulfamide	40%	0 to -5%		
_		tebuconazole	fungicide	none	15%	-15%		
		terbuthylazine	herbicide	Thiencarbazone-methyl, Isoxaflutole, Cyprosulfamide	40%	0 to -5%		
	Total (Veneto, Friu	ıli, Emilia)				-14%	-30%	EUR 50-482
쁖		beta-cyfluthrin	insecticide	Alfacipermetrina	15%	0		
ā		cyproconazole	fungicide	procloraz	15%	0		
<u>e</u>		Clopyralid	herbicide	mcpa	35%	0 to -5%		
m (o)		Deltamethrin	insecticide	Alfacipermetrina	10%	0		
net		Difenoconazole	fungicide	procloraz	15%	0		
Ag (dimethoate	insecticide	imidaclopid	25%	0		
vhe		Epoxiconazole	fungicide	metconazolo	30%	0 to -5%		
Soft wheat (example input: Veneto)		Esfenvalerate	insecticide	Alfacipermetrina	10%	0 to -5%		
So		Fluroxypyr	herbicide	tribenuron, tifensulfuron	20%	0 to -10%		
		Glyphosate	herbicide	none	80%	-15%		

				imidaalansid		0		
	laı	mbda-cyhalothrin	insecticide	imidacloprid	80%			
		Mancozeb	fungicide	none	80%	-15%		
		Pinoxaden	herbicide	tribenuron, tifensulfuron	60%	0		
		prochloraz	fungicide	ciproconazolo	10%	0		
		propiconazole	fungicide	ciproconazolo	30%	0		
	I	prothioconazole	fungicide	procloraz	10%	0		
		tebuconazole	fungicide	procloraz	10%	0		
		tetraconazole	fungicide	ciproconazolo	30%	0		
	Total (Puglia, Friuli, Emilia	1)				-3.5%	-30%	EUR 50-482
ia		Cyproconazole	fungicide	procloraz	20%	0		
lgu'		Clopyralid	herbicide	fluroxipir	4%	0		
<u>ت</u> ۳		Difenoconazole	fungicide	procloraz	10%	0		
ğ		Fluroxypyr	herbicide	clopiralid	3%	0		
. <u>=</u>		Glyphosate	herbicide	fluroxipir, clopiralid	3%	0		
ם		Pinoxaden	herbicide	fluroxipir, clopiralid	5%	0		
Хаг		prochloraz	fungicide	Propiconazolo	10%	0		
r (e		Propiconazole	fungicide	Procloraz	20%	0		
ea		Tebuconazole	fungicide	Procloraz	15%	0		
₹		Tetraconazole	fungicide	Procloraz	15%	0		
Durum wheat (example input: Puglia)		Thiram	fungicide	none	20%	-10%		
ρď		tralkoxydim	herbicide	none	10%	-15%		
_		Triticonazole	fungicide	Procloraz	5%	0		
	Total (Puglia, Emilia)					-15%	-35%	n/a
ple		Beta-cyfluthrin	insecticide	Imidacloprid	5%	0%		
E E		Cyproconazole	fungicide	none	15%	-15%		
(ex		Deltamethrin	insecticide	Lambda-cialotrina	10%	0%		
oo la		Difenoconazole	fungicide	Tebuconazolo	10%	0%		
Tomatoes, sauce (example input: Puglia)		Esfenvalerate	insecticide	none	3%	-15%		
es,		Glyphosate	herbicide	none	5%	-15%		
ato		Imidacloprid	insecticide	Beta-ciflutrin	10%	0%		
Ö	laı	mbda-cyhalothrin	insecticide	Deltametrina	10%	0%		
Ě	-	Metribuzin	herbicide	none	90%	-15%		

		pendimethalin	herbicide	none	10%	-15%		
		Tebuconazole	fungicide	Difenoconazolo	20%	0%		
		Tetraconazole	fungicide	Difenoconazolo	10%	0%		
	Total (Emilia)					-20%	-70%	n/a
		Abamectin	insecticide	tebufenpirad, piridaben	100%	0%		
		beta-cyfluthrin	insecticide	spinosad, clorpirifos methyl	100%	0%		
		Bupirimate	fungicide	various EBI fungicides	100%	0%		
		Captan	fungicide	ziram	100%	-15%		
ia)		Cyproconazole	fungicide	various other azoles	100%	0%		
ΞΕ		clothianidin	insecticide	imidacloprid	100%	0%		
ш Ш		Deltamethrin	insecticide	other pirethroids	100%	0%		
ndı		Difenoconazole	fungicide	piraclostrobin + boscalid	100%	0%		
e E.		Fenbuconazole	fungicide	piraclostrobin + boscalid	100%	0%		
μ		Imidacloprid	insecticide	thiametoxan, acetamiprid	100%	0%		
Хаі		lambda-cyhalothrin	insecticide	alfacipermetrina	100%	0%		
s (e		myclobutanil	fungicide	propiconazolo, penconazolo	100%	0%		
i.		Penconazole	fungicide	propiconazolo	100%	0%		
tar		pendimethalin	herbicide	oxiforfen	25%	0%		
Še		Propiconazole	fungicide	penconazolo	100%	0%		
Peaches, Nectarines (example input: Emilia)		quinoxyfen	fungicide	none	100%	-20%		
Ğ		Spinosad	insecticide	etofenprox	100%	-20%		
Pea		Spirotetramat	insecticide	flonicamid	100%	0%		
		Tebuconazole	fungicide	piraclostrobin + boscalid	100%	0%		
		Tetraconazole	fungicide	propiconazolo, penconazolo	100%	0%		
		Thiacloprid	insecticide	emamectina, etofenprox	100%	0%		
		Thiamethoxam	insecticide	imidacloprid	100%	-10%		
		thiophanate-methyl	fungicide	none	100%	-15%		
ole (Total (Lombardia, Pien	nonte)				-25%	-35%	n/a
ice (example input: Lombardia)		Glyphosate	herbicide	none	60%	-10%		
exan input: mbardi		lambda-cyhalothrin	insecticide	Alfacipermetrina	20%	0%		
		Metam sodium	herbicide/insecticide	Flufenacet	5%	-5%		
Rice Lon		pendimethalin	herbicide	none	60%	-15%		

		triticonazole	Fungicide	strobilurina, azoxistrobina	100%	-10%		
	Total (Emilia)					-40%		n/a
Emilia)		imidacloprid	metaflumizone, clorantranilprole, bacillus rrin zoxamide, propineb, dimetomorf, cyazofamide, ametoctradin funghicides d clomazone, aclonifen, metazaclor, metabromunron pyridaben acetamiprid, clorpirifos metile, buprofezin					
Ë	Leptinotarsia decemlineata	thiamethoxam	incasticidos	metaflumizone, clorantranilprole,	70%		40% n,	
	Leptinotarsia decemineata	deltamethrin	insecticides	bacillus	7070			
i g		lambda-cyhalothrin						
<u>e</u>		fluazinam						
Ĕ	Phytophthora infestans	mancozeb	funghicidos	cyazorannac, ametocaraan	70%			
e K	Thytophthora illestans	metiram	rungmeides		70 70			
es (mandipropamid						
Potatoes (example input:		linuron						
Pot	Chenopodium spp. Amaranthus spp. Solanum spp. Cuscuta spp.	pendimethalin	herbicides		-, 80%			
		metribuzin						
	Total (Emilia, Friuli, Bol	zano)				-30%	-80%	EUR 500-2000
	Panonychus ulmi, Tetranychus urticae	abamectin			30-70%			
	Scale (Planococcus ficus, Heliococcus boemicus)	thiamethoxam	Incontinidae					
a)	Scaphoideus titanus, Empoasca vitis	spirotetramat	Insecticides	acetamiprid, buprofezin, acrinatrina				
≡	Lobesia botrana	Spinosad						
Vine grapes (example input: Emilia)		dinocap		sulfur, spiroxamina, kresoxym- metyl, boscalid, metrafenone,				
. <u>=</u>		quinoxyfen						
츌		Bupirimate						
xan		Difenoconazole						
e e		myclobutanil						
bes	Erysiphae necator, Plasmopara viticola	Penconazole	fungicide		90%			
gra		propiconazole						
ine		tebuconazole						
>		fluazinam						
		Mancozeb						
		folpet						
		mandipropamid						

		metiram						
ia)	Total (Emilia)					-65%		n/a
Ē		clothianidin	insecticide	flonicamid, fluvalinate, pirimicarb	90%			
ii m	Dysaphis plantaginea, Aphis pomi,	Imidacloprid						
ndι	Eriosoma lanigerume	Thiamethoxam						
<u>o</u>		Spirotetramat						
Apples (example input: Emilia)		fluazinam						
exa		Mancozeb						
) Si	Venturia inaequalis	metiram	fungicide	ditianon, dodina, copper, sulfur	90%			
ople		Captan						
₹		Difenoconazole						
	Total (Emilia)					-70%		n/a
a	Cacopsylla pyri	Abamectin	insecticide	none	90%			
≡ E		Spirotetramat						
Pears (example input: Emilia)	Stemphylium vesicarium	fluazinam		pyraclostrobin + boscalid, fludioxonyl, copper				
i g	Venturia inaequalis	iprodione		ditianon, dodina, copper, sulfur				
<u>e</u>		Captan						
a a		Tebuconazole	form ministra		90%			
(ex		Thiram	fungicide		90%			
ars		metiram						
P		mancozeb						
		Difenoconazole						
	Total (Piemonte, Friuli,	Emilia)				-40%	-80%	EUR 250-300
out:	weeds	pendimethalin	Herbicides	imazamox, metribuzim,linuron	90%			
e ji	ragnetto rosso	Abamectin	Insecticide	not available	100%			
ont	weeds	fluazifop-p-butyl	Herbicides	quizalofop p etile	60%			
Soy (example input: Piemonte)	weeds	Glyphosate	Herbicides	altri diserbi	50%			
<u> </u>				altri diserbi				
Soy	weeds	glufosinate	Herbicides	not available	50%			
	cimici	lambda-cyhalothrin	Insecticide	not available	100%			

	weeds	Linuron	Herbicides	metribuzim-oxadiazon	50%			
	weeds	Metribuzin	Herbicides	linuron	50%			
	weeds	S-metolachlor	Herbicides	not available	100%			
	weeds	tepraloxydim	Herbicides	ciclossidim	50%			
	Total (Fruili, Vend	eto)				-14%	-25%	EUR 40-450
	Mal del Piede	Cyproconazole	fungicide	Altro fungicida				
	Dicotilendoni, Infestanti	clopyralid	Herbicides	Aumento densità semina				
	Afidi	Deltamethrin	Insecticide	Altro insetticida				
	Fusarium	Epoxiconazole	fungicide	Altro fungicida				
	Afidi	Esfenvalerate	Insecticide	Altro insetticida				
	Dicotilendoni, Infestanti	Fluroxypyr	Herbicides	Aumento densità semina				
≘	Malerbe infestanti	Glyphosate	Herbicides	Erpicatura con erpice rotante				
Ë	Non reg	glufosinate	Herbicides					
품	Afidi	Imidacloprid	Insecticide	Altro insetticida				
in	Dicotilendoni, Infestanti	ioxynil	Herbicides	Aumento densità semina				
ple	Afidi	lambda-cyhalothrin	Insecticide	Altro insetticida				
хап	Non reg	Linuron	Herbicides					
/ (e				Altro fungicida				
Barley (example input: Friuli)	Septoria	Mancozeb	fungicide					
Ä								
	Fusarium	metconazole	fungicide	Altro fungicida				
	Malerbe infestanti	Metribuzin	Herbicides	Aumento densità semina				
	Malerbe infestanti	Pendimethalin	Herbicides	Aumento densità semina				
	Graminacee, Infestanti	Pinoxaden	Herbicides	Aumento densità semina				
	Mal del Piede	prochloraz	fungicide	Altro fungicida				
	Ruggine	propiconazole	fungicide	Altro fungicida				
	Fusarium	prothioconazole	fungicide	Altro fungicida				

	Fusarium	Tebuconazole	fungicide	Altro fungicida				
	Ruggine	Tetraconazole	fungicide	Altro fungicida				
	Mal del Piede	thiophanate-methyl	fungicide	Altro fungicida				
	Total (Tuscany, Piem	ionte)				-60%	-100%	EUR 200-400
Tuscany)	mosca	spinosad	insetticida	trappole cromotropicheed alimentari	90%			
IS CG	mosca/tignola	deltamethrin	insetticida	nessuna con la stessa	90%			
	mosca/tignola	dimethoate	insetticida	efficacia	90%			
input:	mosca	Imidacloprid	insetticida	dimetoato	90%			
<u>e</u> =:	erbe infestanti	Glyphosate	erbicida	maggiori lavorazioni	20%			
(example	erbe infestanti	glufosinate	erbicida	al terreno e sfalci erba	20%			
exa	erbe infestanti	Amitrole	erbicida					
	x	fluazifop-p-butyl	erbicida					
Olives	x	tebuconazole	fungicida					
	occhio pavone	mancozeb	fungicida	Sali rame	20%			
ole (Total (Tuscany, Piem	onte)				-60%	-100%	EUR 300-500
ıt (example Tuscany)	erbe infestanti	Glyphosate	erbicida		30%			
(ex	erbe infestanti	glufosinate	erbicida		30%			
ξË	cloesporium marciumi	thiophanate-methyl	Fungicida	Sali rame	90%			
Hazelnu input:	frutti cytospora	myclobutanil	Fungicida	Sali rame	90%			
Ξ Ξ	cimici afidi balanino	lambda-cyhalothrin	insetticida	Piretro /etofenprox	90%			

G. THE NETHERLANDS

		Substance		Alternative		Yield ((% change)	Change variable
Crop	Pests	name	Substance type	compared against	Area affected	Minimum	Maximum (incl resistance)	production costs (%/ha)
	Total					-15%	-30%	EUR 600
		deltamethrin						
		esfenvalerate						
		dimethoate						
	Green fly, colorado beetle	lambda-cyhalothrin	Insecticide	pirimicarb, fosthiazate, ethroprofos				
		imidacloprid		•				
	esfenvalerate thiacloprid	esfenvalerate						
		thiacloprid						
Seed potatoes	Nematodes	Metam sodium	Nematicide, Fungicide	oxamyl, fosthiazate, ethroprofos				
otal		iprodione						
D D		mancozeb						
See		maneb		and the state of the state of				
	Rhizoctonia, Phytophthora and	metiram	Fungicide	azoxystrobine, cyazofamid,				
	Alternaria	chlorotolurun	rungiciae	fluopicolide+propamocarb, thiabendazool (+imazalil)				
		fluazinam		,				
		mandipropamid						
		difenoconazole						
		linuron						
	Weed and desiccation	glufosinate	Herbicide	aclinofen, prosulfocarb, cycloxydim, haloxyfo-P-				
		metribuzin		methyl				
		tepraloxydim						
Ware Potat o	Total					-15%	-20%	EUR 400
≥ ₽	Green fly, colorado	esfenvalerate	Insecticide	pirimicarb, pymetrozine,				

	beetle	dimethoate		flonicamid			
		lambda-cyhalothrin					
		clothianidin					
		lambda-cyhalothrin					
		thiacloprid					
		Metam sodium					
		mancozeb					
		maneb		fosthiazaat, oxamyl, ethoprofos, cyazofamid,			
	Nematodes, dry rot	metiram	Nematicide, Fungicide	fluopicolide+propamocarb,			
		fluazinam		azoxystrobine, thiabendazool (+imazalil)			
		mandipropamid					
		difenoconazole					
		linuron					
		glufosinate		bentazon, rimsulfuron,			
	Weed and desiccation	metribuzin	Herbicide	diquat, carfentrazone- ethyl			
		pendimethalin		euryi			
		tepraloxydim					
		tepraioxyuim					
	Total	tepraioxydiiii			-18%	-60%	EUR 50
	Total	deltamethrin			-18%	-60%	EUR 50
			Insecticide	fluoxastrobin, fludioxonil,	-18%	-60%	EUR 50
	Total Greenfly	deltamethrin	Insecticide	fluoxastrobin, fludioxonil, fenpropidin, azoxystrobine	-18%	-60%	EUR 50
·ley	Greenfly	deltamethrin dimethoate esfenvalerate lambda-cyhalothrin		fluoxastrobin, fludioxonil, fenpropidin, azoxystrobine	-18%	-60%	EUR 50
barley		deltamethrin dimethoate esfenvalerate lambda-cyhalothrin Metam sodium	Insecticide Nematicide, Fungicide	fluoxastrobin, fludioxonil, fenpropidin, azoxystrobine	-18%	-60%	EUR 50
at, barley	Greenfly	deltamethrin dimethoate esfenvalerate lambda-cyhalothrin Metam sodium mancozeb		fluoxastrobin, fludioxonil, fenpropidin, azoxystrobine	-18%	-60%	EUR 50
vheat, barley	Greenfly	deltamethrin dimethoate esfenvalerate lambda-cyhalothrin Metam sodium mancozeb maneb		fluoxastrobin, fludioxonil, fenpropidin, azoxystrobine	-18%	-60%	EUR 50
er wheat, barley	Greenfly	deltamethrin dimethoate esfenvalerate lambda-cyhalothrin Metam sodium mancozeb maneb thiram		fluoxastrobin, fludioxonil, fenpropidin, azoxystrobine	-18%	-60%	EUR 50
finter wheat, barley	Greenfly Nematodes	deltamethrin dimethoate esfenvalerate lambda-cyhalothrin Metam sodium mancozeb maneb thiram tebuconazole	Nematicide, Fungicide	fluoxastrobin, fludioxonil, fenpropidin, azoxystrobine	-18%	-60%	EUR 50
Winter wheat, barley	Greenfly	deltamethrin dimethoate esfenvalerate lambda-cyhalothrin Metam sodium mancozeb maneb thiram tebuconazole metconazole		fluoxastrobin, fludioxonil, fenpropidin, azoxystrobine	-18%	-60%	EUR 50
Winter wheat, barley	Greenfly Nematodes	deltamethrin dimethoate esfenvalerate lambda-cyhalothrin Metam sodium mancozeb maneb thiram tebuconazole metconazole triadimenol	Nematicide, Fungicide	fluoxastrobin, fludioxonil, fenpropidin, azoxystrobine	-18%	-60%	EUR 50
Winter wheat, barley	Greenfly Nematodes	deltamethrin dimethoate esfenvalerate lambda-cyhalothrin Metam sodium mancozeb maneb thiram tebuconazole metconazole triadimenol prothioconazole	Nematicide, Fungicide	fluoxastrobin, fludioxonil, fenpropidin, azoxystrobine	-18%	-60%	EUR 50
Winter wheat, barley	Greenfly Nematodes	deltamethrin dimethoate esfenvalerate lambda-cyhalothrin Metam sodium mancozeb maneb thiram tebuconazole metconazole triadimenol	Nematicide, Fungicide	fluoxastrobin, fludioxonil, fenpropidin, azoxystrobine	-18%	-60%	EUR 50

		cyproconazole					
		epoxiconazole					
		prothioconazole					
		ioxynil			-36% -46% EUR 60		
	Weed	glufosinate	Herbicide				
	Weed	pendimethalin	Herbicide				
		ioxynil					
	Total				-36%	-46%	EUR 60
		bifenthrin					
		beta-cyfluthrin					
	Crane fly larvae, other	clothianidin					
	soil insects, greenfly, yellowing disease,	imidacloprid	Insecticide	pirimicarb, thiacloprid			
	caterpillars, other leaf	thiamethoxam	msecticide	ринисать, спасюрни			
	insects	deltamethrin					
		lambda-cyhalothrin					
e e		esfenvalerate					
þe	Nematodes			ovamyl			
_	Nematoues	Metam sodium	Nematicide, Fungicide	oxamyi			
Igar	Nematodes	clothianidin	Nematicide, Fungicide	oxamy:			
Sugar beet	Nematoues		Nematicide, Fungicide	CAUTIFI			
Sugar	Leaf mold, seed and	clothianidin		Hymexazool, Chloridazon,			
Sugar		clothianidin cyproconazole	Fungicide				
Sugar	Leaf mold, seed and	clothianidin cyproconazole epoxiconazole		Hymexazool, Chloridazon,			
Sugar	Leaf mold, seed and	clothianidin cyproconazole epoxiconazole quinoxyfen		Hymexazool, Chloridazon,			
Sugar	Leaf mold, seed and	clothianidin cyproconazole epoxiconazole quinoxyfen thiamethoxam		Hymexazool, Chloridazon,			
Sugar	Leaf mold, seed and soil fungi	clothianidin cyproconazole epoxiconazole quinoxyfen thiamethoxam thiram	Fungicide	Hymexazool, Chloridazon,			
Sugar	Leaf mold, seed and	clothianidin cyproconazole epoxiconazole quinoxyfen thiamethoxam thiram clopyralid		Hymexazool, Chloridazon,			
Sugar	Leaf mold, seed and soil fungi	clothianidin cyproconazole epoxiconazole quinoxyfen thiamethoxam thiram clopyralid tepraloxydim	Fungicide	Hymexazool, Chloridazon,			
	Leaf mold, seed and soil fungi	clothianidin cyproconazole epoxiconazole quinoxyfen thiamethoxam thiram clopyralid tepraloxydim glufosinate	Fungicide	Hymexazool, Chloridazon,	-70%	-100%	n/a
	Leaf mold, seed and soil fungi Weed	clothianidin cyproconazole epoxiconazole quinoxyfen thiamethoxam thiram clopyralid tepraloxydim glufosinate	Fungicide	Hymexazool, Chloridazon, Metamitron pymetrozine, acetamiprid	-70%	-100%	n/a
	Leaf mold, seed and soil fungi Weed Total Greenfly, leaf miner,	clothianidin cyproconazole epoxiconazole quinoxyfen thiamethoxam thiram clopyralid tepraloxydim glufosinate glyphosate	Fungicide Herbicide	Hymexazool, Chloridazon, Metamitron pymetrozine, acetamiprid en pirimicarb, hexythiazox, bifenazate,	-70%	-100%	n/a
Bell pepper (glass)	Leaf mold, seed and soil fungi Weed	clothianidin cyproconazole epoxiconazole quinoxyfen thiamethoxam thiram clopyralid tepraloxydim glufosinate glyphosate	Fungicide	Hymexazool, Chloridazon, Metamitron pymetrozine, acetamiprid en pirimicarb,	-70%	-100%	n/a

		spinosad spiromesifen		muscarium, pyriproxyfen, pymetrozine			
	Botrytis, scerotinia, powdery mildew pythium, phytophthora Total	iprodione thiram penconazole No Change	Fungicide Fungicide	boscalid+ pyraclostrobin, fludioxonil+cyprodinil, fenpyrazamine, fenhaxamid, azoxystrobine, metrafenon pyraclostrobin, trifloxystrobin, zwavel	-100%	-100%	EUR 600
	Caterpillars, thrips, wants, aphids, mites, greenfly,	abamectin deltamethrin imidacloprid spirotetramat thiacloprid thiamethoxam	Insecticide	spirodiclofen, acetamiprid, Lambda cyhalotrin			
Apple trees	Scab, powdery mildew, rust, grey mold, septoria	bupirimate captan folpet tebuconazole iprodione mancozeb penconazole propiconazole tebuconazole	Fungicide	dodine, a.o., clethodim, diquat, metobromuron			
	Weeds	fluazifop-p-butyl glyphosate linuron					
Tulip Bulbs	Total aphids	deltamethrin esfenvalerate imidacloprid lambda-cyhalothrin	Insecticide	Pirimicarb Pyrethrinen Aluminum fosfide	-80%	-90%	n/a

L		thiacloprid		
		captan		
		carbendazim		Chloorthalonil, Flutolanil, Methyl cyclopropeen
		fluazinam		
		folpet		
		iprodione	Fungicide	
		maneb		
		mancozeb		
		prochloraz		
		tebuconazole		
		prothioconazole		
	Namakadaa	thiophanate-methyl		
	Nematodes	Metam sodium		
		glufosinate		
		pendimethalin		
		tepraloxydim		
		Metam sodium		
	Woods	asulam	Hambieida	2,4-D, Aluminum fosfide,
	Weeds	chlorpropham	Herbicide	Diquat, Chloridazon
		dimethenamid-P		
		fluazifop-p-butyl		
		glyphosate		
		s-metolachlor		

H. AUSTRIA

Crop	Pests	Substance name ¹¹¹	Substance type	Alternative compared against	Area affected	Immediate yield (change in %)	Add. resistance effect	Change variable production costs (%/ha)
	Total					-15%	-2%	+/-0%
Wheat	Fungal diseases	carbendazim cyproconazole difenoconazole epoxiconazole fluquinconazole mancozeb metconazole prochloraz propiconazole quinoxyfen tebuconazole tetraconazole thiophanate-meythl	Fungicide	Azoxystrobin, bixafen, cyflufenamid, cyprodinil, fluoxastrobin, fluxapyroxad, fludioxonil, fenpropidin, fenpropimorph, isopyrazam, pyraclostrobin, spiroxamine, trifloxystrobin				
	Green fly, cereal leaf beetle, biting insects, sucking insects, diptera, frit fly	beta-cyfluthrin deltamethrin esfenvalerate imidacloprid lambda-cyhalothrin pirimicarb	Insecticide	Flonicamid, pirimicarb; zeta- cypermethrin, tau- fluvalinate				

¹¹¹ For wheat, barley and OSR also one or several of the following substances have been taken into account: chlorthalonil, cyprodinil, isopyrazam, chlorpyrifos, pirimicarb, amidosulfuron, diflufenican, MCPA, mecoprop, 2,4-D, chlortholuron, flyroxypur, metaldehyd and propyzamide

	thiacloprid			
Weed	amidosulfuron	Herbicide	Great number of substances	
	chlorotolurun			
	clopyralid			
	diflufenican			
	fluroxypyr			
	glyphosate			
	ioxynil			
	MCPA			
	mecoprop			
	metribuzin			
	pendimethalin			
	pinoxaden			
	2,4-D			

Total				-20%	-7%	2%
Fungal diseases	carbendazim cyproconazole difenoconazole epoxiconazole fluquinconazole mancozeb metconazole prochloraz propiconazole prothioconazole tebuconazole triticonazole	Fungicide	Azoxystrobine, bixafen, cyprodinil, fluoxastrobin, fluxapyroxad, fludioxonil, fenpropidin, isopyrazam, spiroxamine			
Green fly, cereal leaf beetle, biting insects, sucking insects, diptera, fruit fly	beta-cyfluthrin deltamethrin	Insecticide	Flonicamid, pirimicarb; zeta- cypermethrin, tau- fluvalinate			

esfenvalerate imidacloprid lambda-cyhalothrin thiacloprid	
lambda-cyhalothrin	
thiacloprid	
Weed chlortholuron Herbicide Great number of substances	
clopyralid	
flyroxypur	
glyphosate	
ioxynil	
metribuzin	
pendimethalin	
pinoxaden	
Total -25% -8%	2%
Fungal diseases difenoconazole Fungicide Azoxystrobine, boscalid,	
metconazole dimoxystrobin,	
fluopyram, prochloraz paclobutrazole	
paciobati azoie	
prothioconazole	
pasiosatia_sic	
prothioconazole tebuconazole Rape flee beetle, soil insects, clothianidin Insecticide Cypermethrin, tau-	
prothioconazole tebuconazole Rape flee beetle, soil insects, clothianidin Insecticide rape stem weevils, blossom imidacloprid imidacloprid Cypermethrin, tau-fluvalinate, zeta-cypermethrin,	
prothioconazole tebuconazole Rape flee beetle, soil insects, clothianidin Insecticide Cypermethrin, tau- rape stem weevils, blossom beetles, rape flee beetle, leaf insects, snails thiamethoxam prothioconazole Cypermethrin, tau- fluvalinate, zeta- cypermethrin, acetamiprid, etofenorox	
prothioconazole tebuconazole Rape flee beetle, soil insects, clothianidin Insecticide Cypermethrin, tau- rape stem weevils, blossom beetles, rape flee beetle, leaf insects, snails thiamethoxam prothioconazole Cypermethrin, tau- fluvalinate, zeta- cypermethrin, acetamiprid, etofenorox	
prothioconazole tebuconazole Rape flee beetle, soil insects, clothianidin Insecticide fluvalinate, zeta- rape stem weevils, blossom beetles, rape flee beetle, leaf insects, snails thiamethoxam Cypermethrin, tau- fluvalinate, zeta- cypermethrin, acetamiprid, acetamiprid, etofenprox,	
prothioconazole tebuconazole Rape flee beetle, soil insects, rape stem weevils, blossom beetles, rape flee beetle, leaf insects, snails thiamethoxam beta-cyfluthrin prothioconazole Cypermethrin, tau-fluvalinate, zeta-cypermethrin, acetamiprid, etofenprox, malathion, pymetrozine	
Rape flee beetle, soil insects, rape stem weevils, blossom beetles, rape flee beetle, leaf insects, snails Rape flee beetle, soil insects, clothianidin imidacloprid insects, snails beta-cyfluthrin beta-cyfluthrin deltamethrin Cypermethrin, tau-fluvalinate, zeta-cypermethrin, acetamiprid, etofenprox, malathion, pymetrozine	
Rape flee beetle, soil insects, rape stem weevils, blossom beetles, rape flee beetle, leaf insects, snails Beta-cyfluthrin deltamethrin esfenvalerate	
Rape flee beetle, soil insects, rape stem weevils, blossom beetles, rape flee beetle, leaf insects, snails Kape flee beetle, soil insects, rape stem weevils, blossom beetles, rape flee beetle, leaf insects, snails Example flee beetle, soil insects, rape stem weevils, blossom beetles, rape flee beetle, leaf insects, snails Example flee beetle, soil insects, rape flee beetle, leaf imidacloprid Example flee beetle, soil insects, rape flee beetle, blossom beetles, rape flee beetle, blossom beetles, rape flee beetle, blossom beetles, rape flee beetle, leaf imidacloprid Example flee beetle, soil insects, rape flee beetle, blossom beetles, blossom beetles, rape flee beetle, blossom beetles, blossom beetles, rape flee beetle, blossom beetles, blossom blo	
Rape flee beetle, soil insects, rape stem weevils, blossom beetles, rape flee beetle, leaf insects, snails Clothianidin Insecticide imidacloprid thiamethoxam beta-cyfluthrin deltamethrin esfenvalerate lambda-cyhalothrin thiacloprid metaldehyd Weed Clopyralid Rape flee beetle, soil insects, fluvalinate, zeta-cypermethrin, acetamiprid, etofenprox, malathion, pymetrozine Bifenox, clethodim,	
Rape flee beetle, soil insects, rape stem weevils, blossom beetles, rape flee beetle, leaf insects, snails Rape flee beetle, leaf insects, rape flee beetle, leaf insects, snails Rape flee beetle, soil insects, clothianidin indacloprid cypermethrin, acetamiprid, etofenprox, malathion, pymetrozine beta-cyfluthrin deltamethrin esfenvalerate lambda-cyhalothrin thiacloprid metaldehyd Weed Clopyralid Herbicide Bifenox, clethodim, clomazone,	
Rape flee beetle, soil insects, rape stem weevils, blossom beetles, rape flee beetle, leaf insects, snails beta-cyfluthrin deltamethrin esfenvalerate lambda-cyhalothrin thiacloprid metaldehyd Weed Clopyralid Frape stem weevils, blossom beetles, rape flee beetle, leaf imidacloprid thiamethoxam acetamiprid, etofenprox, malathion, pymetrozine Bifenox, clethodim, clomazone	

	S-metolachlor pendimethalin		propaquizafop-p, quinmerac, quizalafop-p, quizalafop-p tefuryl			
	picloram 					
	propyzamide					
	Total			-35%	-15%	100%
	cyproconazole	Fungicide	Quinoxyfen, netzschwefel,			
	difenoconazole		kupferoxiclorid. S,			
	epoxiconazole		trobi-resistenzen			
	propiconazole					
	tetraconazole					
	thiophanate-meythl					
	prochloraz					
	thiram					
	hymexazol					
et	beta-cyfluthrin	Insecticide	Tefluthrin, primicarb, spritzung			
, be	clothianidin		met Wirkstoffen			
Sugar beet	imidacloprid					
S	thiamethoxam					
	deltamethrin					
	dimethoate					
	lambda-cyhalothrin					
	clopyralid	Herbicide				
	dimethenamid-P					
	ethofumesate					
	fluazifop-p-butyl					
	triflusulfuron					
	lenacil					
	glyphosate					

	Total				-25%	-10%	4%
	Phytophthora, alternaria, silver scurf	difenoconazole fluazinam	Fungicide	metalaxyl-M, benalaxyl-M, propamocarb,			
		mancozeb		fluopicolide, cymoxanil,			
		maneb		dimethomorph,			
		metiram		benthiavalicarb, valfenalate,			
		mandipropamid		famoxadon, copper, zoxamide,			
		prothioconazole		ametoctradin, cyzofamid, azoxystrobin, pyraclostrobin, boscalid, imazalil			
	Greenfly, Colorado beetle	clothianidin	Insecticide	pirimicarb, pymetrozine,			
		esfenvalerate		flonicamid			
Seed Potato		lambda-cyhalothrin		metaflumizone, chlorantraniliprole, phosmet, azadirachtin,			
Seed		thiacloprid		acetamiprid, Bacillus thuringiensis, pyrethrine			
		beta-cyfluthrin					
		deltamethrin					
		imidacloprid					
		spinosad					
		thiacloprid					
		thiamethoxam					
	Weeds	fluazifop-p-butyl	Herbicide	flufenacet, aclonifen,			
		linuron		prosulfocarb, flurochloridone,			
		metribuzin		rimsulfuron,			
		pendimethalin		propaqizafop, cycloxydim, quizalofop-p-tefuryl, clethodim			
	Total				-25%	-10%	2%
Ware Potato	Phytophthora, alternaria, silver scurf	difenoconazole fluazinam	Fungicide	metalaxyl-M, benalaxyl-M, propamocarb,			

maneb imazalii metiram mandipropamid prothicconazole Greenfly, Colorado beetle clothianidin Insecticide esfenvalerate lambda-cyhalothrin thiacloprid thiacloprid beta-cyfluthrin deltamethrin imidacloprid spinosad thiacloprid thiamethoxam Weeds fluazifop-p-butyl Herbicide linuron maneb imazalii metaflumizone, pymetrozine, flonicamid metaflumizone, flonicamid metaflumizone, pymetrozine, floricamid metaflu		mancozeb		fluopicolide, cymoxanil, dimethomorph, benthiavalicarb, valfenalate, famoxadon, copper, zoxamide, ametoctradin, cyzofamid, azoxystrobin, pyraclostrobin, boscalid		
mandipropamid prothicconazole Greenfly, Colorado beetle clothianidin Insecticide esfenvalerate esfenvalerate lambda-cyhalothrin lambda-cyhalothrin lambda-cyfluthrin lambda-cyfluthrin lambdaloprid lambdal		maneb		imazalil		
Greenfly, Colorado beetle clothianidin Insecticide esfenvalerate esfenvalerate lambda-cyhalothrin lambda-cyhal		metiram				
Greenfly, Colorado beetle clothianidin Insecticide esfenvalerate esfenvalerate chorantraniliprole, phosmet, azadirachtin, acetamiprid, Bacillus thuringiensis, pyrethrine beta-cyfluthrin deltamethrin imidacloprid spinosad thiacloprid thiamethoxam Weeds fluazifop-p-butyl Herbicide fluazifop-p-butyl Herbicide fluazifop-p-butyl clethodim		mandipropamid				
Greenfly, Colorado beetle clothianidin Insecticide pymetrozine, flonicamid metaflumizone, chlorantraniliprole, phosmet, azadirachtin, acetamiprid, Bacillus thuringiensis, pyrethrine beta-cyfluthrin deltamethrin imidacloprid spinosad thiacloprid thiamethoxam Weeds fluazifop-p-butyl Herbicide Fluazifop-p-butyl Herbicide pymetrozine, flonicamid metaflumizone, chlorantraniliprole, phosmet, azadirachtin, acetamiprid, Bacillus thuringiensis, pyrethrine Flufenacet, aclonifen, prosulfocarb, clomazone, flurechloridone, rimsulfuron, propagicafop, cycloxydim, quizalofop-p-tetryl, clethodim		prothioconazole				
estenvalerate chlorantraniliprole, phosmet, azadirachtin, acetamiprid, Bacillus thiacloprid beta-cyfluthrin deltamethrin imidacloprid spinosad thiacloprid thiamethoxam Weeds fluazifop-p-butyl Herbicide fluazifop, cycloxydim, quizalofop-p-tefuryl, clethodim	Greenfly, Colorado beetle	clothianidin	Insecticide	pymetrozine, flonicamid		
lambda-cyhalothrin phosmet, azadirachtin, acetamiprid, Bacillus thuringiensis, pyrethrine beta-cyfluthrin deltamethrin imidacloprid spinosad thiacloprid thiamethoxam flufenacet, aclonifen, prosulfocarb, clomazone, flurochloridone, rimsulfuron, propaqizafop, cycloxydim, quizalofop-p-tefuryl, clethodim		esfenvalerate		metaflumizone, chlorantraniliprole,		
thiacloprid thuringlensis, pyrethrine beta-cyfluthrin deltamethrin imidacloprid spinosad thiacloprid thiamethoxam Herbicide fluzifop-p-butyl Herbicide fluzifop-p-tutyl Herbicide fluzifop-p-tutyl Herbicide fluzifop-p-tutyl Herbicide fluzifop-p-tefuryl, clethodim		lambda-cyhalothrin		phosmet, azadirachtin,		
deltamethrin imidacloprid spinosad thiacloprid thiamethoxam flurenacet, aclonifen, prosulfocarb, clomazone, flurochloridone, rimsulfuron, propaqizafop, cycloxydim, quizalofop-p-tefuryl, clethodim		thiacloprid		thuringiensis,		
imidacloprid spinosad thiacloprid thiamethoxam Herbicide Tiluprohloridne, prosulfocarb, clomazone, flurochloridne, rimsulfuron, propaqizafop, cycloxydim, quizalofop-p-tefuryl, clethodim		beta-cyfluthrin				
spinosad thiacloprid thiamethoxam ### Fluazifop-p-butyl Herbicide ### Herbicide ### Herbicide ### Herbicide ### Herbicide ### Herbicide #### Herbicide #### Herbicide #### Herbicide #### Herbicide ##### Herbicide ###################################		deltamethrin				
thiacloprid thiamethoxam flufenacet, aclonifen, prosulfocarb, clomazone, flurochloridone, rimsulfuron, propaqizafop, cycloxydim, quizalofop-p-tefuryl, clethodim		imidacloprid				
thiamethoxam Flufenacet, aclonifen, prosulfocarb, clomazone, flurochloridone, rimsulfuron, propaqizafop, cycloxydim, quizalofop-p-tefuryl, clethodim		spinosad				
flufenacet, aclonifen, prosulfocarb, clomazone, flurochloridone, rimsulfuron, propaqizafop, cycloxydim, quizalofop-p-tefuryl, clethodim		thiacloprid				
aclonifen, prosulfocarb, clomazone, flurochloridone, rimsulfuron, propaqizafop, cycloxydim, quizalofop-p-tefuryl, clethodim		thiamethoxam				
	Weeds	fluazifop-p-butyl	Herbicide	aclonifen, prosulfocarb, clomazone, flurochloridone, rimsulfuron, propaqizafop, cycloxydim, quizalofop-p-tefuryl,		
		linuron		2.23		

		metribuzin					
		pendimethalin					
	Sprouting	chlorpropham	Growth regulator	maleinsäurehydrazid			
ت ت	Total				-10%	-2%	+/-0%
Grain Maize	Total	triazole	Fungicide		-10%	-2%	+/-0%

I. IRELAND

		Substance		Alternative		Yiel	d (% change)	Change variable
Crop	Pests	name	Substance type	compared against	Area affected	Minimum	Maximum (incl resistance)	production costs (%/ha)
	Total					-20%	-70%	n/a
	Grain Aphids (feeding)	Dimethoate	insecticide	pirimicarb	75%			
	Foliar diseases (e.g.	epoxiconazole						
a	septoria tritici blotch,	prothioconazole		SDHIs (bosclaid, bixafen, fluxapyroxad				
ž.	STB), Stem / root diseases (e.g. eyespot	metconazole	fungicide		100%			
<u>-</u> .	/ take-all), Ear diseases (e.g.	tebuconazole	rungicide	isopyrazm and penthiopyrad),	100%			
Winter wheat	fusarium head blight,	folpet		chlorothalonil				
⋛	FHB)	silthiofam						
		glyphosate		mesosulfuron, iodosulfuron,				
	Used as desicant,	Pinoxaden	herbicide	pyroxulam,	25-75%			
	grass weeds, BLWs	Pendimethalin		fenoxaprop p ethyl, IPU, Prosulfcarb				
	Total			(Defy)		-30%	-70%	n/a
	Grain Aphids (kdr with	al a blata a talta	to a settet de	Cypermethrin	000/	-30-70	-70-70	II/ a
	BYDV)	clothianidin	insecticide	,,	90%			
	Foliar diseases (e.g.	epoxiconazole		SDHIs (bosclaid, bixafen, fluxapyroxad				
le v	Rhynhcosporium, net blotch, brown rust and	prothioconazole		isopyrazm and				
bar	Ramularia), Stem /	metconazole	fungicide	penthiopyrad), chlorothalonil, QoIs	100%			
Winter barley	root diseases (e.g. eyespot / take-all),	tebuconazole		(azoxystrobin, fluxostrobin,				
Z I	Ear diseases (e.g. FHB)	folpet		pyraclostrobin),				
>	,	silthiofam		specific mildewicides				
	Used as desicant, wild oats, canary grass,	glyphosate		diquat, fenoxaprop p				
	Grass weeds (pre- drilling), Grass and	Pinoxaden		ethyl, IPU, Prosulfcarb (Defy)	10-75%			
	BLW's	Pendimethalin		(55.7)				
ey ey	Total					-20%	-50%	n/a
Spring barley	Foliar diseases (e.g. Rhynhcosporium, net blotch, brown rust and	epoxiconazole prothioconazole	fungicide	SDHIs (bosclaid, bixafen, fluxapyroxad isopyrazm and	98%			

	Ramularia), Stem / root diseases (e.g. eyespot / take-all), Ear diseases (e.g. FHB)	metconazole tebuconazole folpet silthiofam		penthiopyrad), chlorothalonil, QoIs (azoxystrobin, fluxostrobin, pyraclostrobin), specific mildewicides				
	Used as desicant, wild oats, canary grass, Grass weeds (pre- drilling), Grass and BLW's	glyphosate Pinoxaden Pendimethalin		diquat, fenoxaprop p ethyl, IPU, Prosulfcarb (Defy)	5-75%			
	Total					-25%	-50-100%	n/a
S	aphids	lambda-cyhalothrin thiacloprid Dimethoate	insecticide	Flonicamid, Pymetrozin, Cypermethrin, Rimisulfuron				
Potatoes	Potato late blight, early blight	fluazinam mancozeb mandipropamid	fungicide	Cymoxanil, benthiavalicarb- isopropyl (Valbon), fluopicolide and cyazofamid				
	Broad and narrow leaved weeds	metribuzin linuron	herbicide	Prosulfucarb,, Diquat, Clomazon, cycloxydim, propaquizafop, Carfentrazone-ethyl				
<u>a</u> 6	Total					-50%	-50%	n/a
Silage maize	Weeds	terbuthylazine pendimethalin	herbicide	mesotrione	100%			
	Total					-40%	-60%	EUR 1,300/ha
Brassica (cabbage)	Caterpillars, Flea Beetle, Aphids	Spinosad Thiacloprid deltamethrin esfenvalerate	insecticide	indoxacarb (Caterpillar) Pyrethrins (Flea Beetle), Aphids (Pymetrozine, Pyrethrins)	50%			
ica (lambda-cyhalothrin Spirotetramat		, ,				
ass	Fungal diseases	Azoles	fungicide	Signum, Amistar	70%			
효		Pendimethalin						
	Weeds	pendimethalin dimethenamid-P	herbicide	metolachlor, clopyralid	90%			
Ca rro ts	Total					-55%	-75%	EUR 2,700/ha

	Aphids, Root Fly	Thiacloprid	Insecticides			
		lambda-cyhalothrin				
	Fungal diseases	Azoles	fungicide			
		Mancozeb				
	Broad leaf and grasses	Pendimethalin	herbicide			
		linuron				
		metribuzin				
Mushrooms	Total	metribuzin		-40%	-40%	n/a

APPENDIX II – Production data

A. FRANCE

Crop	Area (in 1000 ha)	Total output (1000 tons)	Avg yield (t/ha)	Ex-farm price (€/t)	Revenues (€/ha)	Avg seed cost (€/ha)	Avg fertilizer (€/ha)	Avg crop protection costs (€/ha)	Avg other variable costs (€/ha)	Total variable costs (€/ha)
Wheat	5.404	37.818	7,0	178	1.242	62	129	124	156	471
Barley	1.666	10.683	6,4	153	978	74	122	107	151	454
Sugar beet	387	34.476	89,2	29	2.595	217	240	216	359	1.032
Grain Maize	1.687	15.199	9,0	176	1.586	170	160	84	473	887
Potatoes	159	6.895	43,4	237	10.306	780	305	475	174	1.734
OSR	1.507	5.118	3,4	388	1.316	40	161	123	179	503
Vine	768	4.527	5,9	1.935	11.400	65	190	415	2.907	3.577
Beans	28	330	11,8	224	2.590	470	233	323	371	1.397
Apples	44	1.759	28,0	822	22.996	-	254	1.288	3.155	4.697
Carrots	13	555	56,4	636	35.883	1.053	426	493	5.598	7.570

B. GERMANY

Crop	Area (in 1000 ha)	Total output (1000 tons)	Avg yield (t/ha)	Ex-farm price (€/t)	Revenues (€/ha)	Avg seed cost (€/ha)	Avg fertilizer (€/ha)	Avg crop protection costs (€/ha)	Avg other variable costs (€/ha)	Total variable costs (€/ha)
Wheat	3.197	23.888	7,5	163	1.215	82	221	131	38	916
Barley	1.673	10.417	6,2	150	933	80	76	62	30	801
Sugar beet	381	25.889	67,9	26	1.737	268	270	245	25	1.607
Maize	488	4.765	9,8	169	1.652	187	245	67	285	1.432
Potatoes	252	10.800	42,9	134	5.741	1.710	194	280	285	2.910
OSR	1.471	6.307	4,3	308	1.319	56	260	140	65	982
Onions	10	481	40,0	151	6.040	573	224	313	2.658	3.768
Hops	18	34	1,9	4.500	9.465	200	350	1.000	5.000	6.550

C. UK

Crop	Area (in 1000 ha)	Total output (1000 tons)	Avg yield (t/ha)	Ex-farm price (€/t)	Revenues (€/ha)	Avg seed cost (€/ha)	Avg fertilizer (€/ha)	Avg crop protection costs (€/ha)	Avg other variable costs (€/ha)	Total variable costs (€/ha)
Wheat	1.858	13.879	7,5	165	1.236	79	140	107	90	416
Barley	1.050	6.006	5,7	162	924	63	92	97	80	332
Sugar beet	116	7.842	67,4	36	2.393	184	208	201	230	823
Maize	164	5.537	33,8	33	1.103	81	174	141	91	487
Potatoes	143	5.740	40,1	154	6.156	793	360	617	1344	3.114
OSR	648	2.353	3,6	398	1.447	44	169	145	90	448
Peas	32	117	3,6	5.025	18.211	111	44	149	75	379

D. POLAND

Crop	Area (in 1000 ha)	Total output (1000 tons)	Avg yield (t/ha)	Ex-farm price (€/t)	Revenues (€/ha)	Avg seed cost (€/ha)	Avg fertilizer (€/ha)	Avg crop protection costs (€/ha)	Avg other variable costs (€/ha)	Total variable costs (€/ha)
Wheat	2,245	9,342	4.2	156	647					836
Maize	420	2,826	6.7	145	977					840
OSR	779	2,134	2.7	355	972					1,758
Sugar beet	203	11,216	55.2	32	1.786					2,232
Potatoes	396	8,566	21.6	101	2.183					773
Apples	176	2,589	14.7	215	3.156					6,696
Black Currants	34	147	4.3	615	90					2,510

E. SPAIN

Crop	Area (in 1000 ha)	Total output (1000 tons)	Avg yield (t/ha)	Ex-farm price (€/t)	Revenues (€/ha)	Avg seed cost (€/ha)	Avg fertilizer (€/ha)	Avg crop protection costs (€/ha)	Avg other variable costs (€/ha)	Total variable costs (€/ha)
Tomato (glass)	18	1.835	100,0	620	62.000	510	450	240	1.320	2.520
Tomato (open)	33	2.844	86,0	78	6.708	470	621	797	1.815	3.703
Sugar beet	42	3.586	85,7	33	2.833	172	385	290	325	1.172
Citrus	313	5.929	18,9	330	6.244	-	623	522	3.504	4.650
Cherry	25	94	6,0	1.132	6.792	410	430	184	4.177	5.201
Sunflower	803	897	1,1	356	398	70	177	12	150	409
Rice	118	909	7,7	269	2.077	168	170	250	500	1.088
Vine	963	6.050	6,3	136	856	9	83	76	291	459
Olives	2.504	7.758	3,1	121	374	61	89	33	48	231

F. ITALY

Crop	Area (in 1000 ha)	Total output (1000 tons)	Avg yield (t/ha)	Ex-farm price (€/t)	Revenues (€/ha)	Avg seed cost (€/ha)	Avg fertilizer (€/ha)	Avg crop protection costs (€/ha)	Avg other variable costs (€/ha)	Total variable costs (€/ha)
Maize	952	8,505	8.9	195	1,659	130	340	230	830	1530
Soft wheat	580	3,101	5.3	212	656	130	280	115	470	995
Durum wheat	1,262	3,942	3.1	301	1,185	130	300	130	470	1030
Rice	237	1,567	6.6	352	551	170	600	320	475	1565
Potatoes	43	1,206	28.1	228	275					2544
Tomato (sauce)	84	5,153	61.3	169	871					
Vine	698	6,400	9.2	111	710					1477
Apples	57	2,253	39.8	296	668					4620
Pears	38	790	20.9	412	326					2904
Peaches/nectarines	81	1,534	19.0	362	555					2417
Barley	267	963	3.6	178	171					995
Soy	159	532	3.3	306	163					
Hazelnut	68	109	1.6	21	2					712
Olives	1,154	3,262	2.8	31	100					1096

G. THE NETHERLANDS

Crop	Area (in 1000 ha)	Total output (1000 tons)	Avg yield (t/ha)	Ex-farm price (€/t)	Revenues (€/ha)	Avg seed cost (€/ha)	Avg fertilizer (€/ha)	Avg crop protection costs (€/ha)	Avg other variable costs (€/ha)	Total variable costs (€/ha)
Wheat	152	1.323	8,7	193	1.674	516	110	202	47	875
Barley	34	228	6,7	187	1.243	91	119	111	75	396
Seed potatoes	39	1.474	38,0	266	10.112	2	826	340	497	1.665
Ware potatoes	71	3.601	50,7	134	6.794	936	635	399	167	2.138
Potatoes	110	5.075	46	181	8.349	606	703	378	284	1.971
Sugar beet	73	5.660	78,1	52	4.095	228	286	149	7	670
Tulip Bulbs	12				644					2.990
Apple trees	0,8				80					23.992
Bell pepper (glass)	1	361	267	1200	320.400					64.553

H. AUSTRIA

Crop	Area (in 1000 ha)	Total output (1000 tons)	Avg yield (t/ha)	Ex-farm price (€/t)	Revenues (€/ha)	Avg seed cost (€/ha)	Avg fertilizer cost (€/ha)	Avg crop protection costs (€/ha)	Avg other variable costs (€/ha)	Total variable costs (€/ha)
Wheat	285	1.682	5,9	160	944	73	136	34	369	612
Barley	82	774	6	159	932	72	222	51	375	720
Maize	211	2.147	10	162	1.638	171	334	81	788	1.374
Sugar beet	47	3.250	72	36	2.565	199	397	285	776	1.657
Seed Potatoes	1,5	30	20	256	5.120	585	458	434	991	2.468
Ware Potatoes	20	635	31	176	5.447	1.102	358	483	1.302	3.246
Potatoes	22	665	30	179	5.424	1.102	358	483	1.302	3.246
OSR	56	173	3,3	415	1.351	49	231	158	392	830
Vine	44	305	7	1.690	11.705	-	60	592	1.673	2.325

I. IRELAND

Сгор	Area ('000 ha)	Total output (1000 tons)	Av. yield (t/ha)	Ex-farm price (€/t)	Revenues €/ha	Avg seed cost (€/ha)	Avg fertilizer (€/ha)	Avg crop protection costs (€/ha)	Avg other variable costs (€/ha)	Avg total variable cost (€/ha)
Wheat	66	585	8,9	141	1.255	80	247	278	440	1.045
Barley	32	279	8,7	154	1.334	86	150	125	560	921
Spring barley	160	1.078	6,7	154	1.036	86	150	125	560	921
Potatoes	11	351	32,1	318	10.204	990	498	794	2500	4.782
Brassica	1	19	25,8	271	7.011	384	625	431	2001	3.441
Mushrooms		63		1715	-					
Carrots	1	36	56,0	353	19.745	952	445	660	2367	4.424
Maize	12	1.788	145,7	28	4.134					

APPENDIX III - Methodology

Yield effects

Immediate yield change (%)

To estimate the changes in yields per crop and country requires various analytical steps:

- Elaboration of pests/diseases that occur
- 2. Identifying which substances are used to treat the crop
- 3. Estimation of the area on which the substances are applied
- 4. Description of alternatives that remain available
- 5. Assessment of the immediate yield changes
- 6. Evaluation of future resistance effects

The starting point for the analysis is the pests/diseases that occur per crop in a particular land. Subsequently, based on the list of the 75 substances, experts filtered the substances with risk to be banned that are applied to treat these pests/diseases. This is done for each crop and for each sort of pesticide (insecticide, herbicide, fungicide, disinfection).

In order to complete the estimation, the overall effect is balanced by the area on which the substance is applied. This is influence by the share of the total agricultural area of a specific crop on which the pest/disease occurs as well as the market share of the substance and the organic share of production.

$$\left[\frac{\text{Technical loss}}{\text{Average yield}}\right] \times \left[\text{Area affected}\right]$$

Given this basis, for each pest the crop experts estimated the yield losses due to the withdrawal of the substance. Were possible the estimation was based on agronomic references. Generally it consists of comparing the yield per hectare obtained with the substance to the yield obtained with the remaining alternatives. These alternatives can be other substances but also different farming techniques etc.

To give an example, if neonicotinoids were to be removed, the remaining alternative to treat barley against insects would be pyrethrin. The yield loss, according to the Arvalis Institute, would be 1.25 t/ha. In this case, the Institute assessed that 40% of cultivated area in barley is concerned. The change in yield expressed in % is:

$$\left[\frac{\text{Technical loss}=1.25t/ha}{\text{Average yield}=6.4t/ha}\right] \times \left[\text{Area affected}=40\%\right] = -9.4\%$$

If the molecule concerns several pests on the same crop, losses due to different pests may be added. But it may be determine case by case. Particular caution was paid to avoid double counting, if a crop didn't develop optimally due to insects, using fungicides has a smaller added value etc.

For some specialty crops, especially when the number of pesticide solutions is low to begin with, the withdrawal of one or more substances may affect the crop heavily. In this case it the yield effect related to losing the 75 substances might be equal to the total average yield of that crop.

Resistance effects & crop protection costs (%)

In the long-term effects of the withdrawal of the 75 substances may increase the resistance risk. To estimate this, the following steps were taken:

- 1. Identification of the number of active substance for each pesticide type:
 - Insecticides: number of substances families
 - Fungicides: number of substances families
 (C, M, SDHI, triazols, morpholins, strobs, Aza-napht, benzimid)
 - Herbicides: number of substances by HRAC mode of action (A, C1, C2, C3, K1, K2, O)
- 2. Analysis of the number of remaining substances
- 3. Classification of the level of risk based on the amount of alternatives remaining.
 - Remaining 0-1 mode of action: high risk
 - Remaining 2-3 mode of action: medium risk
 - Remaining 4-5 mode of action: low risk
- 4. Assessment of the new situation

Based on agronomic expertise, depending on the amount of alternatives remaining counting the more frequent risk for the whole modes of action. For example:

	Resist	ance ri	isk						Risk level	Additional crop	Alternatives
	М	С	SDHI	strobilurin	triazol	morpholin	Aza- Napht	Benzimid	ievei	protection costs	Aiternatives
cereals	-50%				-100%		-50%	-100%			azole disappearance would increase the risk of
before	4				11		2	1	medium	10%	resistance on SDHI and strobilurins, last
after	2				0		1	0		10%	substances to be effective on septoria

- 5. Transformation of the new situation in increasing cost based on the following correspondence table:
 - No risk: no change
 - Low risk: increase costs crop protection of 5%
 - Medium risk: increase costs crop protection of 10 %
 - High risk: increase costs crop protection of 15 %
- 6. Determination of the global impact for the crop based on the average result for insecticides, herbicides and fungicides. For example: +10% for wheat in France.

	% add. costs insecticides	% add. cost herbicides	% add. cost in fungicides	Total average % add. cost
Wheat	5%	15%	10%	10%
Durum wheat	5%	15%	10%	10%
Barley	5%	15%	10%	10%

7. The related long-term yield effect is estimated based on agro-economic expertise.

Extrapolation

The extrapolation is done based on several steps:

- 1. First, the model calculates the weighted average of the yield change per crop. This is based on the individual country's share of total EU production of a particular crop.
- 2. This EU average yield change is applied to the total uncovered EU production, EU production outside of the 9 countries in scope.
- 3. The average ex-farm price and variable crop production costs, relevant to calculate the total gross margin change, are total EU averages as well. The ex-farm price is based on Eurostat information for EU-28 while the variable crop production costs are the weighted average of the 9 countries studied in detail.

Crops/countries combinations for which only NNI info is available to estimate the yield effect are excluded from the extrapolation.

Environmental impact

Change in GHG (% of CO2 eq t/ha)

This indicator is often linked to the change in treatment frequency. We consider that the number of applications may increase in the same ratio that the GHG.

Sometime the alternative solution is a cultivation pass. The energy used by the tractor is higher than needed by a sprayer application. The change in GHG must be indicated. There is no specific methodology except having the accurate references.

Change in treatment frequency

This indicator may be relevant for some countries. For example when you replace a seed treatment (neoni) by a conventional spray (pyrethrin), you often use two treatments to obtain the same effect, in the best case. The treatment frequency has been increased by 100% ($1\rightarrow 2$). We suggest adding this information close to the "change in protection cost". In many cases the change in protection cost is corresponding to the change in treatment frequency.

Analysis of carbon footprint is based on the following:

Indicator	Statistics	Source
Farm level input		
Farm Input Emissions		State of the Art on Energy Efficiency in Agriculture; Agree & Wageningen UR
Litre diesel use per application	7	
Amount of additional applications	2	
Transport		
kg CO2 emissions per litre Diesel	3,14	Harvesting energy with fertilizers, Fertilizer Europe
Distance USA to EU (in km)	7.895	
g CO2 eq emissions per km	14	Guidelines for Measuring and Managing CO2 Emission from Freight Transport

		Operations
Land use changes		
t CO2 eq. emissions for biomass on one hectare	57	IPCC Guidelines Volume 4: Agriculture, Forestry and Other Land Use (AFOLU)
Year amortization time to convert one time deforestation to annual impact	20	IPCC Guidelines Volume 4: Agriculture, Forestry and Other Land Use (AFOLU)

APPENDIX IV - Substances

Table 13: Sources for substances in Table 3

Source	Title	Year	Description/Scope of document
WRc (for DEFRA)	Extended impact assessment study of the human health and environmental criteria for endocrine disrupting substances proposed by HSE, CRD	2013	To determine which active substances from the PPP Approved List can be regarded as EDs of very high regulatory concern, which substances require further information, which substances are considered EDs of low concern and which substances are not EDs
DEFRA (Department for Environment, Food and Rural Affairs)	Water Framework Directive implementation in England and Wales: new and updated standards to protect the water environment	2014	List of pollutants causing greatest risk of harm
CRD (Chemicals regulation directorate)	PROPOSAL FOR A REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL CONCERNING THE PLACING OF PLANT PROTECTION PRODUCTS ON THE MARKET: Summary impact assessment	2009	List of substances with high and medium risk of
EU Restriction		2014	The European Union has voted to ban the use of methiocarb slug pellets due to their hazardous effect on grain-eating farm birds such as finches and sparrows. The approval for these poison-bait pellets is being stopped through the EU, and in the UK it is likely to have the biggest impact on potato growers. Bayer CropScience is the only global manufacturer of methiocarb and it has confirmed that this year will be the last one that it can be sold in the UK. The other major slug pellet product used in the UK is metaldehyde, which accounts for about 80% of the market, but it has come under pressure after the product has been found in watercourses.

APPENDIX V - References

Table 14: Data sources wheat

Wheat	Source	Туре	Total estimate ¹¹²
France			SRQ
Fungicide	Nomisma; 'The Assessment of the Economic Importance of Azoles in European Agriculture: Wheat case study'; 2012	Study	
Insecticide	Humboldt Forum for Food and Agriculture 'The value of neonicotinoid seed treatment in the European Union'; 2013 Arvalis Institute	Study Experts	
Herbicide	Avarlis Institute	Experts	
UK			Study
Fungicide	Anderson; 'The effect of the loss of plant protection products on UK agriculture and horticulture and the wider economy'; 2014	Study	
Insecticide	Anderson; 'The effect of the loss of plant protection products on UK agriculture and horticulture and the wider economy'; 2014	Study	
Herbicide	Anderson; 'The effect of the loss of plant protection products on UK agriculture and horticulture and the wider economy'; 2014	Study	
Germany			SRQ
Fungicide	Trinity College Dublin; 'Restricted availability of azole-based fungicides'; 2011	Study	
Insecticide	No information available		
Herbicide	Landwirtschaftskammer NRW	Experts	
Poland			Study
Fungicide			
Insecticide	Fed of agri producers		
Herbicide			
Italy			
Fungicide	Nomisma; 'The Assessment of the Economic Importance of Azoles in European Agriculture: Wheat case study'; 2012 Confagricoltura, Coldiretti	Study Experts	
Insecticide	Confagricoltura, Coldiretti	Experts	
Herbicide	Confagricoltura, Coldiretti	Experts	
Netherlands			Study
Fungicide	Wageningen University, Agrifirm	Experts	
Insecticide	WUR Study	Study	
Herbicide		Experts	
Ireland			

 $^{^{112}}$ This refers to whether the experts/studies provided one total yield change effect per crop or whether SRQ estimated a total figure based on separate figures per pesticide type provided

Fungicide			
Insecticide	Teagasc	Experts	
Herbicide			
Austria			
Fungicide			
Insecticide	Landwirtschaftskammer Niederösterreich Landwirtschaftskammer Oberösterreich	Experts	
Herbicide			

Table 15: Data sources barley

Barley	Source	Туре	Total estimate
France			SRQ
Fungicides	Arvalis Institute	Experts	
Insecticides	Humboldt Forum for Food and Agriculture Working Paper 01/2013; 'The value of neonicotinoid seed treatment in the European Union' Arvalis Institute	Study Experts	
Herbicides	Arvalis Institute	Experts	
UK			Study
Fungicides	Anderson; 'The effect of the loss of plant protection products on UK agriculture and horticulutre and the wider economy'; 2013	Study	
Insecticides	Anderson; 'The effect of the loss of plant protection products on UK agriculture and horticulutre and the wider economy'; 2014	Study	
Herbicides	Anderson; 'The effect of the loss of plant protection products on UK agriculture and horticulutre and the wider economy'; 2015	Study	
Germany			SRQ
Fungicides	Trinity College Dublin, Institut für Agribusiness ; 'Restricted availability of azole-based fungicides'; 2011	Study	
Insecticides	No information available		
Herbicides	Landwirtschaftskammer NRW	Experts	
Netherlands			Study
Fungicides	Study Wageningen University	Experts	
Insecticides	Piet Śpoorenberg, WUR Aaldrik Venhuizen, Agrifirm	Study Experts	
Herbicides	Adiutik Verinuizeri, Agriiitti	Lxperts	
Ireland			
Fungicides			
Insecticides	Teagasc	Experts	
Herbicides			_
Austria			Expert
Fungicides			
Insecticides	LK NÖ bzw. LK OÖ		
Herbicides			

Table 16: Data sources oilseed rape

OSR	Source	Туре	Total estimate
France			SRQ
Fungicides	Arvalis Institute	Experts	
Insecticides	Humboldt Forum for Food and Agriculture; 'The value of neonicotinoid seed treatment in the European Union'; 2013 Arvalis Institute	Study Experts	
Herbicides	Arvalis Institute	Experts	
UK			Study
Fungicides	Anderson; 'The effect of the loss of plant protection products on UK agriculture and horticulutre and the wider economy'; 2013	Study	
Insecticides	Anderson; 'The effect of the loss of plant protection products on UK agriculture and horticulutre and the wider economy'; 2014	Study	
Herbicides	Anderson; 'The effect of the loss of plant protection products on UK agriculture and horticulutre and the wider economy'; 2015	Study	
Germany			SRQ
Fungicides	Trinity College Dublin, Institut für Agribusiness; 'Restricted availability of azole-based fungicides'; 2011	Study	
Insecticides	Humboldt Forum for Food and Agriculture; 'The value of neonicotinoid seed treatment in the European Union'; 2013	Study	
Herbicides	Landwirtschaftkammer NRW	Experts	
Poland			
Fungicides		Study Expert	
Insecticides	Humboldt Forum for Food and Agriculture; 'The value of neonicotinoid seed treatment in the European Union'; 2013	Study Expert	
Herbicides		Study Expert	
Ireland			
Fungicides			
Insecticides	Teagasc	Experts	
Herbicides			
Austria			
Fungicides			
Insecticides	Austrian Chamber of Agriculture	Expert	
Herbicides			

Table 17: Data sources potatoes

Potatoes	Source	Туре	Total estimate
France			Expert
Fungicides	Arvalis Institute	Expert	
Insecticides	Arvalis Institute	Expert	
Herbicides	Arvalis Institute	Expert	
UK			Study
Fungicides	Anderson	Study	
Insecticides	Anderson	Study	
Herbicides	Anderson	Study	
Germany			SRQ
Fungicides	Bavarian State Research Center for Agriculture; Nechwatal, J, Wagber, S. and Zellner, M.: Pflanzenschutzrückblick 2014	Study	
Insecticides	no information available		
Herbicides	Landwirtschaftskammer NRW	Experts	
Poland			
Fungicides	Fed of agri producers		
Insecticides			
Herbicides			
Netherlands			Study
Fungicides	WUR and Agrifirm Study Wageningen University		
Insecticides		Study + Expert	
Herbicides			
Ireland			
Fungicides			
Insecticides	Teagasc	Experts	
Herbicides			
Austria			
Fungicides	Landwirtschaftskammer Niederösterreich	Experts	
Insecticides		Experts	
Herbicides		Experts	

Table 18: Data sources sugar beet

Sugarbeet	Source	Туре	Total estimate
France			SRQ
Fungicides	Institut Technique de la Betterave Experts Arvalis Institute Experts		
Insecticides	Institut Technique de la Betterave Arvalis Institute Humboldt Forum for Food and Agriculture; 'The value of neonicotinoid seed treatment in the European Union'; 2013	Experts Experts Study	
Herbicides	Institut Technique de la Betterave Arvalis Institute	Experts Experts	
UK			Study
Fungicides	Anderson; 'The effect of the loss of plant protection products on UK agriculture and horticulture and the wider economy'; 2014	Study	
Insecticides	Anderson; 'The effect of the loss of plant protection products on UK agriculture and horticulture and the wider economy'; 2014	Study	
Herbicides	Anderson; 'The effect of the loss of plant protection products on UK agriculture and horticulture and the wider economy'; 2014	Study	
Germany			SRQ
Fungicides	Landwirtschaftskammer NRW Trinity College Dublin, Institut für Agribusiness; 'Restricted availability of azole-based fungicides'; 2011	Expert Study	
Insecticides	Landwirtschaftskammer NRW Humboldt Forum for Food and Agriculture; 'The value of neonicotinoid seed treatment in the European Union'; 2013	Expert Study	
Herbicides	Landwirtschaftskammer NRW	Expert	
Spain			SRQ
Fungicides	Aimcra	Experts	
Insecticides	Aimcra	Experts	
Herbicides	Aimcra	Experts	
Netherlands			Study
Fungicides	WUR, IRS Study Wageningen University	Experts Study	
Insecticides			
Herbicides			

Table 19: Data sources maize

Maize	Source	Туре	Total estimate
Germany			
Fungicides	Humboldt Forum	Study Expert	
Insecticides			Yes
Herbicides	Landwirtschaftkammer NRW		
Austria			
Fungicides			
Insecticides	Austrian Chamber of Agriculture / LK Steiermark	Expert	
Herbicides			
France			
Fungicides			
Insecticides	Arvalis Institute Humboldt Study	Study Expert	
Herbicides			
Poland			
Fungicides			
Insecticides	Fed of agri producers		
Herbicides	3 1		
Italy			
Fungicides	Confagricoltura, Coldiretti	Expert	No
Insecticides	Confagricoltura, Coldiretti, Humboldt	Study Expert	No
Herbicides	Confagricoltura, Coldiretti	Expert	No
Ireland			
Fungicides	Teagasc	Experts	
Insecticides	Teagasc	Experts	
Herbicides	Teagasc	Experts	

References production costs

Country	Crop	Year	Source base data	Year	Source variable costs data
Austria	Wheat	2009-2013	Landwirtschaftskam mer Oberösterreich	2010-2014	Bundesanstalt für Agrarwirtschaft Österreich; Landwirtschaftskammer Oberösterreich
Austria	Barley	2009-2013	Eurostat	2010-2014	Bundesanstalt für Agrarwirtschaft Österreich
Austria	Maize	2010-2014	Bundesanstalt für Agrarwirtschaft Österreich	2010-2014	Bundesanstalt für Agrarwirtschaft Österreich
Austria	Sugar beet	2009-2013	Eurostat	2010-2014	Bundesanstalt für Agrarwirtschaft Österreich
Austria	Seed Potatoes	2010-2014	Landwirtschaftskam mer Niederösterreich	2010-2014	Bundesanstalt für Agrarwirtschaft Österreich
Austria	Ware Potatoes	2010-2014	Landwirtschaftskam mer Niederösterreich	2010-2014	Bundesanstalt für Agrarwirtschaft Österreich
Austria	Potatoes	2010-2014	Landwirtschaftskam mer Niederösterreich	2010-2014	Bundesanstalt für Agrarwirtschaft Österreich
Austria	OSR	2009-2013	Eurostat	2010-2014	Bundesanstalt für Agrarwirtschaft Österreich
Austria	Vine	2009-2013	Eurostat	2008	Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (BMLFUW)
France	Carrots	2009-2013	Eurostat		CTIFL
France	Apples	2009-2013	Eurostat		CTIFL
France	Soft Wheat	2009-2013	Eurostat	2010	Brookes
France	Wheat	2009-2013	Eurostat	2010	Brookes
France	Winter barley	2009-2013	Eurostat	2010	Brookes
France	Barley	2009-2013	Eurostat	2010	Brookes
France	Spring barley	2009-2013	Eurostat	2010	Brookes
France	Durum wheat	2009-2013	Eurostat	2010	Brookes
France	Maize	2009-2013	Eurostat	2010	Brookes
France	OSR	2009-2013	Eurostat	2010	Brookes
France	Sugar beet	2009-2013	Eurostat	2010	Brookes
France	Potatoes	2009-2013	Eurostat	2010	Brookes
France	Beans	2009-2013	Eurostat/Cenaldi	2009-2013	ANPLC/Cénaldi
France	Vine	2009-2013	Eurostat		FADN
Germany	Wheat	2009-2013	Eurostat		Bayerische Landesanstalt für Landwirtschaft
Germany	Barley	2009-2013	Eurostat		Bayerische Landesanstalt für Landwirtschaft
Germany	Maize	2009-2013	Eurostat		Bayerische Landesanstalt für Landwirtschaft
Germany	Sugar beet	2009-2013	Eurostat		Bayerische Landesanstalt für Landwirtschaft
Germany	Potatoes	2009-2013	Eurostat		Bayerische Landesanstalt für Landwirtschaft
Germany	OSR	2009-2013	Eurostat		Bayerische Landesanstalt für Landwirtschaft
Germany	Hops	2009-2013	Eurostat		Arbeitsgruppe Hopfenanbau

					und Produktionstechnik
Germany	Onions	2009-2013	Eurostat		Koordination Pflanzenschutz Gemüsebau Dienstleistungszentrum Ländlicher Raum - Rheinpfalz - (DLR)
Ireland	Wheat	2009-2013	CSO	2010	Brookes
Ireland	Barley	2009-2013	CSO	2010	Brookes
Ireland	Spring barley	2009-2013	CSO	2010	Brookes
Ireland	Potatoes	2009-2013	CSO	2010	Brookes
Ireland	Brassica	2010-2013	Teagasc		Teagasc
Ireland	Mushrooms	2010-2013	Teagasc		
Ireland	Carrots	2010-2013	Teagasc	2008	Teagasc
Ireland	Maize	2009-2013	Eurostat		
Italy	Soft wheat	2009-2013	Eurostat	2010	Brookes
Italy	Durum wheat	2009-2013	Eurostat	2010	Brookes
Italy	Wheat	2009-2013	Eurostat	2010	Brookes
Italy	Maize	2009-2013	Eurostat	2010	Brookes
Italy	Tomato (open)	2009-2013	Eurostat		
Italy	Peaches/nec tarines	2009-2013	Eurostat		
Italy	Rice	2009-2013	Eurostat		
NL	Wheat	2009-2013	Agrimatie / WUR LEI	2009-2013	Agrimatie / WUR LEI
NL	Barley	2009-2013	Agrimatie / WUR LEI	2009-2013	Agrimatie / WUR LEI
NL	Seed potatoes	2009-2013	Agrimatie / WUR LEI	2009-2013	Agrimatie / WUR LEI
NL	Ware potatoes	2009-2013	Agrimatie / WUR LEI	2009-2013	Agrimatie / WUR LEI
NL	Potatoes				
NL	Sugar beet	2009-2013	Agrimatie / WUR LEI	2009-2013	Agrimatie / WUR LEI
NL	Tulip Bulbs	2009-2013	Agrimatie / WUR LEI	2009-2013	Agrimatie / WUR LEI
NL	Apple trees	2009-2013	ZLTO	2009-2013	Agrimatie / WUR LEI
NL	Bell pepper (glass)	2009-2013	Agrimatie / WUR LEI, CBS, GFActueel.nl	2009-2013	Agrimatie / WUR LEI
Poland	Winter wheat	2009-2013	Eurostat	2010	Brookes
Poland	Wheat	2009-2013	Eurostat	2010	Brookes
Poland	Barley	2009-2013	Eurostat	2010	Brookes
Poland	Maize	2009-2013	Eurostat	2010	Brookes
Poland	OSR	2009-2013	Eurostat	2010	Brookes
Poland	Sugar beet	2009-2013	Eurostat	2010	Brookes
Poland	Potatoes	2009-2013	Eurostat	2010	Brookes
Poland	Apples	2009-2013	Eurostat		
Poland	Black Currants	2009-2013	Eurostat	2010	Brookes
Spain	Tomato (glass)		AEPLA		AEPLA
Spain	Tomato (open)		AEPLA		Cooperativas Agro-Alimentarias
Spain	Sugar beet	2009-2013	Eurostat	2010	Brookes
Spain	Citrus	2009-2013	Eurostat		Cooperativas Agro-Alimentarias
Spain	Cherry	2009-2013	Eurostat		Cooperativas Agro- Alimentarias

Spain	Sunflower	2009-2013	Eurostat	2010	Brookes
Spain	Rice	2009- 2013	Eurostat		AVA-ASAJA
Spain	Vine	2009- 2013	Eurostat	2012	FADN (Spain - Vine)
Spain	Olives	2009- 2013	Eurostat	2009-2012	FADN (Spain - Horticulture)
UK	Wheat	2009- 2013	Eurostat	2010	Brookes
UK	Barley	2009- 2013	Eurostat	2010	Brookes
UK	Sugar beet	2009- 2013	Eurostat	2010	Brookes
UK	Maize	2009- 2013	Eurostat	2010	Brookes
UK	Potatoes	2009- 2013	Eurostat	2010	Brookes
UK	OSR	2009- 2013	Eurostat	2010	Brookes
UK	Peas	2009- 2013	Eurostat	2010	Brookes